
Unit 3

2 September 2021 1

UNIT 3 - Contents

• Arrays
• Strings
• Packages
• Creating Packages
• Using Packages
• Visibility control
• Exception Handling Techniques
• try-catch
• throw and throws
• finally
• Multithreading
• Creation of Multi-threaded programs
• Thread Class
• Runnable interface

2 September 2021 2

Arrays

• A group of related data items that share a
common name.

• One dimensional arrays

Syntax: type arrayname[] = new type[size];

Example: int salary[] = new int[20];

2 September 2021 3

Arrays

Initialization of arrays

int number[] ={35,23,67,45,32}

• For initialization of arrays, there is a special value
called null which represents an array with no
value.

• In Java all arrays store the allocated size in a
variable called length.

Example

int l = a.length, where a is an array.

2 September 2021 4

Arrays

Two dimensional arrays

Syntax

Type arrayname[][]=new type[size][size]

Example

int m[][] = new int[4][4]

✓In Java the positions in an array will be
automatically set to 0 if it is not assigned a
value.

2 September 2021 5

String Handling

• String is a sequence of characters.

• String is the object representation of an
unchangeable character array.

• StringBuffer is a companion class used to
create strings that can be manipulated after
they are created.

• Both String and StringBuffer classes are not
subclassible.

2 September 2021 6

String Handling - Constructors

• Empty string creation
String s =new String();
• String initialized with characters
String s =new String(“Java”);
• Strings can be created by passing an array of characters

to the constructor.
char c[]={‘a’, ’b’, ’c’, ‘d’, ‘e’, ’f’, ‘g’};
String s =new String(c);
System.out.println(s);
String s1=new String(c,2,3);
System.out.println(s1);

2 September 2021 7

String Handling - Length

String s =“abc”;

System.out.println(s.length());

System.out.println(“abc”.length());

2 September 2021 8

String Handling - Concatenation

String s =“He is ” + age + “years old”;

String s=new StringBuffer(“He is “)

.append(age)

.append(“ years old.”)

.toString()

String s=“four: “ + 2+ 2

String s=“four:”+ (2+2)

2 September 2021 9

String Handling – Character Extraction

• To extract single character from a string, we
can use the charAt() method.

• To extract more than one character, we can
use the getChars() method which allows us to
specify the index of the first and one past the
last character we want to copy.

• Example Program

2 September 2021 10

String Handling - Comparison

• To check whether two strings are equal, we
can use the equals() method. Returns true if
two strings are exactly equal.

• If we want to compare strings irrespective of
the case, we can use the equalsIgnoreCase()
method.

• Example Program

2 September 2021 11

String Handling - Ordering

• For sorting applications, we need to know
which string is less than, equal to or greater
than the next.

• For this the method compareTo() is used. If
the ordering is to be done irrespective of the
case, the method compareToIgnoreCase() is
used.

• Example Program

2 September 2021 12

String Handling – indexOf() and
lastIndexOf()

• Each of these methods returns the index of the character
we are searching for. If the search is unsuccessful, it returns
-1.

• int indexOf(int ch)- Returns the index of the first occurence
of the character ch.

• int lastIndexOf(int ch)- Returns the index of the last
occurence of the character ch.

• int indexOf(String str)- Returns the index of the first
character of the first occurence of the substring str.

• int lastIndexOf(String str)- Returns the index of the first
character of the last occurence of the substring str.

• Example Program

2 September 2021 13

String Handling – indexOf() and
lastIndexOf()

• int indexOf(int ch, int fromIndex)- Returns the index of the
first occurence after fromIndex of the character ch.

• int lastIndexOf(int ch, int fromIndex)- Returns the index of
the first occurence before fromIndex of the character ch.

• int indexOf(string str, int fromIndex)- Returns the index of
the first character of the first occurence after fromIndex of
the substring str.

• int lastIndexOf(string str, int fromIndex)- Returns the index
of the first character of the first occurence before
fromIndex of the substring str.

• Example Program

2 September 2021 14

String Copy Modifications

❑ substring() – used to extract a range from a
String using substring.

Example Program

❑ concat() – creates a new object with the
current contents of our string with the new
string.

Example Program

2 September 2021 15

String Copy Modifications

❑ replace() – takes 2 characters as parameters. All
occurrences of the first are replaced with the second.

Example Program
❑ toLowerCase() and toUpperCase() – toLowerCase()

converts all the characters in a string to lowercase and
toUpperCase() converts all characters to uppercase in
a string.

Example Program
❑ trim() - returns a copy of the string without any

leading and trailing whitespace.
Example Program

2 September 2021 16

StringBuffer

• String represents fixed length, immutable
character sequences.

• StringBuffer represents growable and
writeable character sequences.

• StringBuffer can have characters and
substrings inserted in the middle or appended
to the end.

2 September 2021 17

StringBuffer Methods

❑Constructors – A StringBuffer may be constructed
with no parameter which reserves room for 16
chars .

❑Can also pass an initial string which will set the
initial contents and reserve room for 16 more
characters.

❑Current length of the StringBuffer can be found
using length() method and total allocated
capacity using the capacity() method.

❑Example Program

2 September 2021 18

StringBuffer Methods

❑charAt() and setCharAt() – charAt() method
returns the character at a specified position.
setCharAt() replace a character at a specified
position.

❑Example Program

2 September 2021 19

StringBuffer Methods

❑append() – used to add substrings to the end
of the string.

❑Example Program

❑insert() – used to insert substrings in a given
string.

❑Example Program

2 September 2021 20

Packages

• Containers for classes used to keep the class
name space compartmentalized.

• Packages are stored in a hierarchical manner
and are explicitly imported into new class
definitions.

1. Java API packages

2. User defined packages

2 September 2021 21

Java API Packages

• Provides a large number of classes grouped
into different packages.

1. java.lang – include classes for primitive types,
mathematical functions, threads, exceptions
etc.

2. java.util – consists of language utility classes
such as date, time, hashtables etc.

3. java.io – provide the facilities for input and
output.

15 July 2020 22

Java API Packages

4. java.net – include classes for communication
with local computers as well as with internet
servers.

5. java.applet – classes for creating and
implementing applets.

6. java.awt – include classes for windows,
buttons, lists, menus etc.

2 September 2021 23

User defined Packages

1. Declare the package at the beginning of the program
using the form

package pkg1[.pkg2[.pkg3]]; For example, the package
java.awt.image should be stored in java\awt\image

2. Define the class that is to be put in the package and
declare it public.

3. Create a subdirectory under the directory where the
main source files are stored.

4. Store the file as classname.java in the subdirectory
created.

5. Compile the file. This creates the .class file in the
subdirectory.

2 September 2021 24

Packages – import statement

• Java packages can be accessed using the
import statement.

• Syntax

import package1[.package2][.package3].classname;

Import packagename.*

2 September 2021 25

Packages – Access Protection

Private No
modifier

Private
protected

Protected Public

Same Class Yes Yes Yes Yes Yes

Same package
subclass

No Yes Yes Yes Yes

Same package non-
subclass

No Yes No Yes Yes

Different package
subclass

No No Yes Yes Yes

Different package
non-subclass

No No No no Yes

2 September 2021 26

Packages – Access Protection

• Anything declared public can be accessed
from anywhere.

• Anything declared private cannot be seen
outside a class.

• No modifier is the default.

• Java’s protected is equivalent to friend in C++.

• If we want to emulate protected in C++, we
must use java’s private protected.

2 September 2021 27

Exception Handling

• Exception is an abnormal condition caused by
a runtime error in the program.

• Example division by zero.

• When java interpreter encounters such an
error, it creates an exception object and
throws it. (informs an error has occurred)

• If exception object is not caught and handled
properly, the interpreter will display an error
message.

2 September 2021 28

Exception Handling

• If we want the program to continue, then we
should catch the exception object and display
appropriate message for taking corrective
actions.

1. Find the problem (Hit the Exception)
2. Inform that an error has occurred (Throws the

exception)
3. Receive the error information(Catch the

exception)
4. Take corrective actions (Handle the Exception)

2 September 2021 29

Exception Handling - Hierarchy

2 September 2021 30

Exception Types

1. ArithmeticException – caused by
mathematical errors such as division by zero.

2. ArrayIndexOutOfBoundsException – caused
by wrong array indices.

3. ArrayStoreException – caused when a
program tries to store the wrong type of data
in an array.

2 September 2021 31

Exception Types

4. FileNotFoundException – caused by an
attempt to access a non-existent file.

5. IOException – caused by general I/O failures
such as inability to read from a file.

6. StringIndexOutOfBoundsException – caused
when a program attempts to access a non
existent character position in a string.

2 September 2021 32

Uncaught Exceptions

class Exco{

public static void main(String args[])

{int d=0;

int a = 42/d;

}}

• An Exception occurs and in the above
example, we haven’t coded an event handler.
Hence default runtime handler is run.

2 September 2021 33

Uncaught Exceptions

Output

Java.lang.ArithmeticException:/by zero at
Exco.main (Exco.java:4)

• Classname Exco, the method name main, the
filename Exco.java and line number 4 are all
included in the stack trace.

2 September 2021 34

Exception Handling – try and catch

try{ statement;

}

catch(Exception e)

{statement;

}//processes the exception

• Try is to prepare a block of code that is likely
to cause an error condition and throw an
exception.

2 September 2021 35

Exception Handling – try and catch

• Catch block catches the exception thrown by
the try block.

• Try block can have one or more statements
that could generate an exception.

• If any one statement generates an exception,
the remaining statements are skipped and
execution jumps to the catch block that is
placed next to the try block.

2 September 2021 36

Exception Handling – try and catch

• Catch block can have one or more statements.

• If the catch parameter matches with the type
of exception object, then the exception is
caught and statements in the catch block will
be executed.

• Every try statement should be followed by at
least one catch statement.

Example program

2 September 2021 37

Exception Handling – multiple catch
clauses

• It is possible to have more than one catch statement in try block.
try {
statement}
catch(Exception_type1 e)
{statement;//processes exception type 1
}
catch(Exception_type2 e)
{statement; //processes exception type 2
}
catch(Exception_type3 e)
{statement; // processes exception type 3
}

Example program

2 September 2021 38

Exception Handling – Nested try
statements

• We can wrap a try statement inside another
try statement.

• Each time a try statement is encountered, the
context of that exception is stacked up until all
of the nested try statement completes.

• If a lower level try doesn’t have a match, the
stack is unwound and the next try’s match is
checked.

Example program

15 July 2020 39

Exception Handling- finally

• When exceptions are thrown, the flow of code
follows a non linear path.

• finally block is executed always no matter the
exception is caused or caught.

• Example Program

2 September 2021 40

Exception Handling – throw and
throws

• Throw is used to throw the exception, whereas
throws is declarative for the method.

• They are not interchangeable.

Example program

public void myMethod(int param) throws
MyException{

If (param<10)

throw new MyException(“Too Low”)

}

2 September 2021 41

Exception Handling – throw and
throws

• If a method is throwing an exception, it
should either be surrounded by a try catch
block or the method should have throws
clause in its signature.

• Throws clause tells the compiler that this
particular exception would be handled by the
calling method.

2 September 2021 42

Multithreading

• A concept in which the programs are divided
into two or more processes which can be run
in parallel.

• For example, when the program waits for the
input, the CPU sits idle until the I/P is
received.

• In a multithreaded environment, CPU can
perform other computational tasks when it
waits for the I/O.

2 September 2021 43

Multithreading

• In multitasking, tasks are known as heavy weight
processes.

• In multithreading, tasks are known as light weight
processes.

• Difference is that heavy weight processes are in
separate address spaces and can be thought of as
different programs running on the same system like
word and excel.

• Threads share the same address space.
• Threads are used in Java enabled Web browsers which

can download a file, display a Web page in a window,
print another Web page to a printer and so on.

2 September 2021 44

Life Cycle of a Thread

stop()

start()

Active
Thread yield()

stop()

Idle Thread

15 July 2020 45

New Born

Running Runnable
Dead

Blocked

Suspend()
Sleep()
Wait()

Resume()
Notify()

Life Cycle of a Thread

1. Newborn State

2. Runnable State

3. Running State

4. Blocked State

5. Dead State

2 September 2021 46

Life Cycle of a Thread

• Newborn State – When we create a thread, it is in
the new born state.

1. Schedule it for running using start() method.

2. Kill it using stop() method

2 September 2021 47

Life Cycle of a Thread

• Runnable State – This state means the thread is ready
for execution and is waiting for the availability of the
processor.

• These threads are executed in a FIFO manner.
• If all threads have equal priority, then they are given

time slots for execution.
• This process of assigning time to threads is known as

time slicing.
• We can relinquish the control to another thread of

equal priority by using the yield() method.

2 September 2021 48

Life Cycle of a Thread

• Running State – the processor has given its time to the
thread for execution.

• A running thread may relinquish its control in one of the
following situations.

1. Suspend using the suspend() method. A suspended thread
can be revived using the resume() method.

2. Sleep a thread for a specified time period using the method
sleep(time) where time is in milliseconds. The thread re-
enters the runnable state as soon as the time period is
elapsed.

3. A thread can be put to wait state using wait() method. The
thread can be scheduled to run again using notify() method.

2 September 2021 49

Life Cycle of a Thread

• Blocked State – When a thread is prevented from
entering into the runnable state and subsequently
the running state.

• Happens when the thread is suspended, sleep or in
wait state.

2 September 2021 50

Life Cycle of a Thread

• Dead State – Kill the thread using the stop()
method.

2 September 2021 51

Creating Threads

• Threads are implemented in the form of
objects and contain a method called run().

• The heart of the thread is the run() method.

• Threads can be implemented in 2 ways.

1. By extending the Thread class.

2. By implementing Runnable interface.

2 September 2021 52

Extending the Thread class

1. Declare the class as extending the Thread class.

2. Implement the run() method that is responsible
for the execution of the thread code.

3. Create a Thread object and call the start()
method.

Example Program

Program to illustrate yield(), sleep() and stop()
methods.

2 September 2021 53

Implementing the Runnable Interface

Example Program

2 September 2021 54

End of Unit 3

2 September 2021 55

