
Java Programming - Module 5

1

APPLET FUNDAMENTALS

Applets are small applications that are accessed on an Internet server, transported

over the Internet, automatically installed, and run as part of a web document. After an

applet arrives on the client, it has limited access to resources so that it can produce a

graphical user interface and run complex computations without introducing the risk

of viruses or breaching data integrity.

Let’s begin with the simple applet shown here:

Example 1: Simple Applet

import java.awt.*;

import java.applet.*;

public class SimpleApplet extends Applet

{

public void paint(Graphics g)

{

g.drawString("A Simple Applet", 20, 20);

}

}

This applet begins with two import statements. The first imports the Abstract

Window Toolkit (AWT) classes. Applets interact with the user (either directly or

indirectly) through the AWT, not through the console-based I/O classes. The AWT

contains support for a window-based, graphical user interface. The second import

statement imports the applet package, which contains the class Applet. Every applet

that you create must be a subclass of Applet. The next line in the program declares

the class SimpleApplet. This class must be declared as public, because it will be

accessed by code that is outside the program. Inside SimpleApplet, paint() is

declared. This method is defined by the AWT and must be overridden by the applet.

paint() is called each time that the applet must redisplay its output. paint() is also

called when the applet begins execution. Whatever the cause, whenever the applet

must redraw its output, paint() is called. The paint() method has one parameter of

type Graphics. This parameter contains the graphics context, which describes the

Java Programming - Module 5

2

graphics environment in which the applet is running. This context is used whenever

output to the applet is required.

The applet does not have a main() method. Unlike Java programs, applets do not

begin execution at main(). After you entering the source code, compile the applet in

the same way that you have been compiling programs. Running an applet involves a

different process.

In fact, there are two ways in which you can run an applet:

• Executing the applet within a Java-compatible web browser.

• Using an applet viewer, such as the standard tool, appletviewer.

An applet viewer executes applet in a window. This is generally the fastest and

easiest way to test an applet. To execute an applet in a web browser, you need to

write a short HTML text file that contains a tag that loads the applet. Currently,

SunMicrosystems recommends using the APPLET tag for this purpose.

Here is the HTML file that executes SimpleApplet:

<applet code="SimpleApplet" width=200 height=60>

</applet>

The width and height statements specify the dimensions of the display area used by

the applet. After you create this file, you can execute your browser and then load this

file, which causes SimpleApplet to be executed.

More convenient method for applets is simply including a comment at the head of the

java source code file that contains an <applet> tag.

Therefore the SimpleApplet code looks like this:

Example 2: Simple Applet

import java.awt.*;

import java.applet.*;

/*<applet code=”SimpleApplet” width=200 height=60>

</applet> */

public class SimpleApplet extends Applet

{

Java Programming - Module 5

3

public void paint(Graphics g)

{

g.drawString("A Simple Applet", 20, 20);

}

}

Output

THE APPLET CLASS

The Applet class defines the methods that provide all necessary support for applet

execution, such as starting and stopping. It also provides methods that load and

display images, and methods that load and play audio clips. Applet extends the AWT

class Panel. In turn, Panel extends Container, which extends Component. These

classes provide support for Java’s window-based, graphical interface. Thus, Applet

provides all of the necessary support for window-based activities.

All but the most trivial applets override a set of methods that provides the basic

mechanism by which the browser or applet viewer interfaces to the applet and

controls its execution. Four of these methods, init(), start(), stop(), and destroy(),

apply to all applets and are defined by Applet. Default implementations for all of

these methods are provided. Applets do not need to override those methods they do

not use. However, only very simple applets will not need to define all of them. AWT-

based applets (such as those discussed in this chapter) will also override the paint()

method, which is defined by the AWT Component class. This method is called when

the applet’s output must be redisplayed. These five methods can be assembled into

the skeleton shown here:

Example 3: Applet Skelton

Java Programming - Module 5

4

// An Applet skeleton.

import java.awt.*;

import java.applet.*;

/*<applet code="AppletSkel" width=300 height=100>

</applet>*/

public class AppletSkel extends Applet

{

// Called first.

public void init()

{

// initialization

}

/* Called second, after init().

Also called whenever the applet is restarted. */

public void start()

{

// start or resume execution

}

// Called when the applet is stopped.

public void stop()

{

// suspends execution

}

/* Called when applet is terminated. This is the last method executed. */

public void destroy()

{

// perform shutdown activities

}

// Called when an applet's window must be restored.

public void paint(Graphics g)

{

// redisplay contents of window

}

}

APPLET INITIALIZATION AND TERMINATION

Java Programming - Module 5

5

It is important to understand the order in which the various methods shown in the

skeleton are called. When an applet begins, the following methods are called, in this

sequence:

1. init()

2. start()

3. paint()

When an applet is terminated, the following sequence of method calls takes place:

1. stop()

2. destroy()

Let’s look more closely at these methods.

init()

The init() method is the first method to be called. This is where you should initialize

variables. This method is called only once during the run time of your applet.

start()

The start() method is called after init(). It is also called to restart an applet after it

has been stopped. Whereas init() is called once—the first time an applet is loaded—

start() is called each time an applet’s HTML document is displayed onscreen. So, if

a user leaves a web page and comes back, the applet resumes execution at start().

paint()

The paint() method is called each time your applet’s output must be redrawn. This

situation can occur for several reasons. For example, the window in which the applet

is running may be overwritten by another window and then uncovered. Or the applet

window may be minimized and then restored. paint() is also called when the applet

begins execution. Whatever the cause, whenever the applet must redraw its output,

paint() is called. The paint() method has one parameter of type Graphics. This

parameter will contain the graphics context, which describes the graphics

environment in which the applet is running. This context is used whenever output to

the applet is required.

stop()

Java Programming - Module 5

6

The stop() method is called when a web browser leaves the HTML document

containing the applet—when it goes to another page, for example. When stop() is

called, the applet is probably running. You should use stop() to suspend threads that

don’t need to run when the applet is not visible. You can restart them when start() is

called if the user returns to the page.

destroy()

The destroy() method is called when the environment determines that your applet

needs to be removed completely from memory. At this point, you should free up any

resources the applet may be using. The stop() method is always called before

destroy().

APPLET LIFE CYCLE

Every Java applet inherits a set of default behaviours from the Applet class. As a

result when an applet is loaded it undergoes a series of changes in its state as shown

in the figure below.

The applet states include

Java Programming - Module 5

7

 Born or initialization state

 Running state

 Idle state

 Dead or destroyed state

Initialization state

Applet enters initialization state when it is first loaded. This is achieved by calling

the init() method of Applet class. The applet is born. At this stage initial values of

applet is set by overriding init() method. The initialization occurs only once in the

applet’s life cycle.

Running state

Applet enters running state when the system calls the start() method of Applet class.

This occurs automatically after the applet is initialized. Starting can also occur if the

applet is already in stopped(idle) state. Unlike init() method the start() method may

be called more than once.

Idle or stopped state

An applet becomes idle when it is stopped from running. Stopping occurs

automatically when we leave the page containing the currently running applet. We

can also do so by calling the stop() method explicitly.

Dead State

An applet is said to be dead when it is removed from memory. This occurs

automatically by invoking destroy() when we quit the browser. Like initialization,

destroy stage occurs only once in the applet’s life cycle.

Display state

Applet moves to the display state whenever it has to perform some output operations

on the screen. This happens immediately after the applet enters into running state.

The paint method is called to accomplish this task. Almost every applet will have a

paint() method. Default version of paint() method does absolutely nothing. Therefore

programmer need to override this method if anything to be displayed on screen.

PASSING PARAMETERS TO APPLETS

Java Programming - Module 5

8

User defined parameters can be supplied to an applet using <PARAM> tags. The

PARAM tag allows you to specify applet-specific arguments in an HTML page.

Applets access their attributes with the getParameter() method. It returns the value

of the specified parameter in the form of a String object.

Example 4: Simple Applet retrieving parameter

import java.applet.*;

import java.awt.*;

public class UseParam extends Applet

{

 public void paint(Graphics g)

{

String str=getParameter("msg");

g.drawString(str,50, 50);

}

}

/*<applet code="UseParam" width="300" height="300">

<param name="msg" value="Welcome to applet">

</applet> */

Output

Working with Graphics

Java Programming - Module 5

9

One of the most important features of Java is its ability to draw graphics. We can

write Java applets that draw lines, figures of different shapes, images and text in

different fonts and styles. Every applet has its own area of the screen known as

canvas , where it creates its display. A Java applet draws graphical image inside its

space using the coordinate system as shown below.

Java coordinate system has the origin (0,0) in the upper left corner. Positive x values

are to the right, and positive y values are to the bottom. The values of coordinates x

and y are in pixels.

The Graphics Class

Java’s Graphics class includes methods for drawing many different shapes, from

simple lines to polygons to text in a variety of fonts.

Drawing methods of Graphics class

Method Description

 clearRect() Erases a rectangular area of the canvas.

 copyArea() Copies the rectangular area of the canvas to another area.

drawArc() Draws a hollow arc

drawLine() Draws a straight line

drawOval() Draws a hollow oval

drawPolygon() Draws a hollow polygon

Java Programming - Module 5

10

drawRect() Draws a hollow rectangle

drawRoundRect() Draws a hollow rectangle with rounded corners

drawstring() Displays a text string

fillArc() Draws a filled arc

fillOval() Draws a filled oval

fillPolygon() Draws a filled polygon

fillRect() Draws a filled rectangle

fillRoundRect() Draws a filled rectangle with rounded corners

getColor() Retrieves the current drawing color

getFont() Retrieves the currently used font

setColor() Sets the drawing color

getFont() Sets the font

Lines and Reactangles

The simplest shape that can be drawn with the Graphics is a line. The drawLine()

method takes two pair of coordinates,(x1,y1) and (x2,y2) as arguments and draws a

line between them.

For example the following code draws a straight line from (10,10) to (50,50):

g.drawLine(10,10,50,50);

g is the Graphics object passed to paint() method.

Similarly a rectangle can be drawn using drawRect() method. This method takes

four arguments. The first two represent x and y coordinates from the top left

corner of the rectangle and the remaining two represent the width and height of

the rectangle.

For example the following statement will draw a rectangle starting at (10,60) having

a width of 40 pixels and a height of 30 pixels.

g.drawRect(10,60,40,30);

g is the Graphics object passed to paint() method.

Java Programming - Module 5

11

The fillRect() method can be used to draw a solid box. This also takes four arguments

(same as drawRect() method)

Example :: g.fillRect(10,60,40,30);

Rounded rectangles (Rectangles with rounded edges) can be created using the

methods drawRoundRect() and fillRoundRect() . These methods are similar to

drawRect() and fillRect() except that they take two extra arguments representing

the width and height of the angle of corners. These extra parameters indicate how

much of corners will be rounded.

Example:: g.drawRoundRect(10,100,80,50,10,10);

g.fillRoundRect(10,100,80,50,10,10);

Circles and Ellipses

The Graphics class does not have any method for circles or ellipses. However

drawOval() method can be used to draw a circle or ellipse. Ovals are just like

rectangles with overly rounded corners. drawOval() method takes four arguments:

the first two represent the top left corner of the imaginary rectangle and the

other two represent the width and height of the oval itself. If width and height are

the same, the oval becomes a circle. Ovals coordinates are actually the coordinates of

an enclosing rectangle.

Like rectangle methods, drawOval() method draws outline of an oval, and the

fillOval() method draws a solid Oval.

Example 5: lines,rectangles, circles , ovals and rounded rectangles

import java.awt.*;

import java.applet.*;

/*<applet code="LineRect " width=500 height=200></applet>*/

public class LineRect extends Applet

{

 public void paint(Graphics g)

 {

 g.drawLine(10,10,50,50);

 g.drawRect(10,60,40,30);

Java Programming - Module 5

12

 g.setColor(Color.blue);

 g.fillRect(60,10,30,80);

 g.setColor(Color.green);

 g.drawRoundRect(10,100,80,50,10,10);

 g.setColor(Color.yellow);

 g.fillRoundRect(20,110,60,30,5,5);

 g.setColor(Color.red);

 g.drawLine(100,10,230,140);

 g.drawLine(100,140,230,10);

 g.drawString("Line Rectangles Demo",65,180);

 g.drawOval(230,10,200,150);

 g.setColor(Color.blue);

 g.fillOval(245,25,100,100);

 }

}

Output

Drawing Arcs

An arc is a part of an oval. The drawArc(), designed to draw arcs ,takes six

arguments. The first four are same arguments as that of drawOval() method and

last two arguments represent the starting angle of the arc and the number of

degrees(sweep angle) around the arc. In drawing arcs , Java actually formulates the

arc as an oval and then draws only a part of it as dictated by the last two arguments.

Java Programming - Module 5

13

Example 6: Drawing arcs

/*<applet code="DrawArcExample.class" width=500 height=500>

</applet>*/

import java.applet.Applet;

import java.awt.Color;

import java.awt.Graphics;

public class DrawArcExample extends Applet

{

 public void paint(Graphics g)

 {

 setForeground(Color.red); //set color to red

 g.drawArc(10,10,50,100,10,45);

//this will draw an arc of width 50 & height 100 at (10,10)

 g.fillArc(100,10,100,100,0,90);

 }

}

Output

Drawing polygons

Polygons are shapes with many sides. A polygon may be considered a set of lines

connected together. The end of first line is the beginning of the second line, and end

of the second is the beginning of the third and so on. We can draw polygon with n

sides using the drawLine() method n times in succession. We can draw polygons

more conveniently using the drawPolygon() method of Graphics class.

This method takes three arguments.

Java Programming - Module 5

14

 An array of integers containing x coordinates.

 An array of integers containing y coordinates.

 An integer for the total number of points.

Example 7: Drawing Polygons

import java.awt.*;

import java.applet.*;

/*<applet code="DrawingPolygons.class" width=400 height=200>

</applet> */

public class DrawingPolygons extends Applet

{

 public void paint(Graphics g)

 {

 int x[] = { 70, 150, 190, 80, 100 };

 int y[] = { 80, 110, 160, 190, 100 };

 g.drawPolygon (x, y, 5);

 int x1[] = { 210, 280, 330, 210, 230 };

 int y1[] = { 70, 110, 160, 190, 100 };

 g.fillPolygon (x1, y1, 5);

 }

}

Output

