
Swing

Java Swing is a GUI Framework that contains a set of classes to provide more

powerful and flexible GUI components than AWT. Java Swing is a part of Java

Foundation Classes (JFC) that is used to create window-based applications. It is

built on top of AWT API and acts as a replacement of AWT API, since it has

almost every control corresponding to AWT controls. Swing provides the look

and feel of modern Java GUI. Swing library is an official Java GUI tool kit

released by Sun Microsystems. It is used to create graphical user interface with

Java. Swing classes are defined in javax.swing package and its sub-packages.

MVC Architecture

Swing API architecture follows MVC architecture in the following manner.

 Model represents component's data.

 View represents visual representation of the component's data.

 Controller takes the input from the user on the view and reflects the

changes in Component's data.

 Swing component has Model as a seperate element, while the View and

Controller part are clubbed in the User Interface elements. Because of

which, Swing has a pluggable look-and-feel architecture.

Swing Features

 Light Weight − Swing components are independent of native Operating

System's API as Swing API controls are rendered mostly using pure JAVA

code instead of underlying operating system calls.

 Rich Controls − Swing provides a rich set of advanced controls like Tree,

TabbedPane, slider, colorpicker, and table controls.

 Highly Customizable − Swing controls can be customized in a very easy

way as visual appearance is independent of internal representation.

 Pluggable look-and-feel − SWING based GUI Application look and feel

can be changed at run-time, based on available values.

The Swing classes are subclasses of java.awt.Container and

java.awt.Component. The name of the Swing class starts with the letter J . the

top-level class of Swing is JComponent. JComponent is both a container and

a component. GUI components like button, label, checkbox, panel etc are

handled in JComponent class. GUI components can be added on a panel

window or a frame window. The frame in Swing is handled in JFrame class.

The JComponent class and AWT class hierarchy is shown in figure 1.

Figure 1: Swing Hierarchy

Difference between AWT and Swing

There are many differences between java awt and swing that are given below.

JFrame

No. Java AWT Java Swing

1
AWT components are platform-

dependent.

Java swing components

are platform-independent.

2
AWT components

are heavyweight.

Swing components

are lightweight.

3
AWT doesn't support pluggable

look and feel.

Swing supports pluggable look

and feel.

4
AWT provides less

components than Swing.

Swing provides more powerful

components such as tables, lists,

scrollpanes, colorchooser,

tabbedpane etc.

5)
AWT doesn't follows

MVC(Model View Controller)
Swing follows MVC.

Swing components

A component is an independent visual control and Java Swing Framework

contains a large set of these components which provide rich functionalities and

allow high level of customization. They all are derived from JComponent

class. All these components are lightweight components. This class provides

some common functionality like pluggable look and feel, support for

accessibility, drag and drop, layout, etc.

A container holds a group of components. It provides a space where a

component can be managed and displayed. Containers are of two types:

1. Top level Containers

 It inherits Component and Container of AWT.

 It cannot be contained within other containers.

 Heavyweight.

 Example: JFrame, JDialog, JApplet

2. Lightweight Containers

 It inherits JComponent class.

 It is a general purpose container.

 It can be used to organize related components together.

 Example: JPanel

JFrame

JFrame is a java class that is extended by Frame class of Java. JFrame is treated

as the main window. In JFrame different elements such as labels, text fields,

buttons can be added. These elements on JFrame create Graphical User

Interface. JFrame is also known as Swing top-level container.

Constructors of JFrame Class

Constructor Description

JFrame() It constructs a new frame that is

initially invisible.

JFrame(GraphicsConfiguration gc) It creates a Frame in the specified

GraphicsConfiguration of a screen device

and a blank title.

JFrame(String title) It creates a new, initially invisible

Frame with the specified title.

JFrame(String title,

GraphicsConfiguration gc)

It creates a JFrame with the specified title

and the specified GraphicsConfiguration

of a screen device.

JButton

JButton class provides functionality of a button. It is used to create a labelled

button component that has platform independent implementation. The

application result in some action when the button is pushed. JButton class has

three constuctors,

Constructor Description

JButton() It creates a button with no text and icon.

JButton(String s) It creates a button with the specified text.

JButton(Icon i) It creates a button with the specified icon object.

Commonly used methods of JButton class are

Method Description

void setText(String s) It is used to set specified text on

button

String getText() It is used to return the text of

the button.

void setEnabled(boolean b) It is used to enable or disable

the button.

void setMnemonic(int a) It is used to set the mnemonic on

the button.

void addActionListener(ActionListener a) It is used to add the action

listener to this object.

Program 1: JButton Sample

import javax.swing.*;

public class ButtonExample

{

 public static void main(String[] args)

 {

 JFrame f=new JFrame("Button Example");

 JButton b=new JButton("Click Here");

 b.setBounds(50,100,95,30);

 f.add(b);

 f.setSize(400,400);

https://www.javatpoint.com/java-actionlistener
https://www.javatpoint.com/java-actionlistener

 f.setLayout(null);

 f.setVisible(true);

 }

}

Output

JLabel

The object of JLabel class is a component for placing text in a container. It is

used to display a single line of read only text. The text can be changed by an

application but a user cannot edit it directly. It inherits JComponent class.

Commonly used Constructors:

Constructor Description

JLabel() Creates a JLabel instance with no

image and with an empty string for the

title.

JLabel(String s) Creates a JLabel instance with the

specified text.

JLabel(Icon i) Creates a JLabel instance with the

specified image.

JLabel(String s, Icon i, int

horizontalAlignment)

Creates a JLabel instance with the

specified text, image, and horizontal

alignment.

Commonly used Methods:

Methods Description

String getText() It returns the text string that a

label displays.

void setText(String text) It defines the single line of text this

component will display.

void setHorizontalAlignment(int

alignment)

It sets the alignment of the label's

contents along the X axis.

Icon getIcon() It returns the graphic image that the

label displays.

int getHorizontalAlignment() It returns the alignment of the label's

contents along the X axis.

Program 2: JLabel Sample

import javax.swing.*;

class LabelExample

{

 public static void main(String args[])

 {

 JFrame f= new JFrame("Label Example");

 JLabel l1,l2;

 l1=new JLabel("First Label.");

 l1.setBounds(50,50, 100,30);

 l2=new JLabel("Second Label.");

 l2.setBounds(50,100, 100,30);

 f.add(l1); f.add(l2);

 f.setSize(300,300);

 f.setLayout(null);

 f.setVisible(true);

 }

}

Output

JCheckBox

The JCheckBox class is used to create a checkbox. It is used to turn an option

on (true) or off (false). Clicking on a CheckBox changes its state from "on" to

"off" or from "off" to "on ".It inherits JToggleButton class.

Commonly used Constructors:

Constructor Description

JJCheckBox() Creates an initially unselected check box button

with no text, no icon.

JChechBox(String s) Creates an initially unselected check box with

text.

JCheckBox(String text,

boolean selected)

Creates a check box with text and specifies

whether or not it is initially selected.

JCheckBox(Action a) Creates a check box where properties are taken from

the Action supplied.

Commonly used Methods:

Methods Description

String getText() It returns the label of the checkbox displays.

void setText(String text) It sets the label of the checkbox.

boolean isSelected() It returns the state of the checkbox.

void setSelected(boolean

state)

It sets the Checkbox to a specified state.

Program 3: JCheckBox Sample

import javax.swing.*;

public class CheckBoxExample

{

 CheckBoxExample()

 {

 JFrame f= new JFrame("CheckBox Example");

 JCheckBox checkBox1 = new JCheckBox("C++");

 checkBox1.setBounds(100,100, 50,50);

 JCheckBox checkBox2 = new JCheckBox("Java", true);

 checkBox2.setBounds(100,150, 150,50);

 f.add(checkBox1);

 f.add(checkBox2);

 f.setSize(400,400);

 f.setLayout(null);

 f.setVisible(true);

 }

 public static void main(String args[])

 {

 new CheckBoxExample();

 }

}

Output

JRadioButton

The JRadioButton class is used to create a radio button. It is used to choose

one option from multiple options. It is widely used in exam systems or quiz. It

should be added in ButtonGroup to select one radio button only.

Commonly used Constructors:

Constructor Description

JRadioButton() Creates an unselected radio button with no

text.

JRadioButton(String s) Creates an unselected radio button with

specified text.

JRadioButton(String s, boolean

selected)

Creates a radio button with the specified text

and selected status.

Commonly used Methods:

Methods Description

void setText(String s) It is used to set specified text on button.

String getText() It is used to return the text of the button.

void setEnabled(boolean b) It is used to enable or disable the button.

void addActionListener(ActionListener

a)

It is used to add the action listener to this

object.

Program 4: JRadioButton Sample

import javax.swing.*;

public class RadioButtonEx

{

 JFrame f;

 JRadioButton r1,r2;

 ButtonGroup bg;

 RadioButtonEx()

 {

 f=new JFrame();

 r1=new JRadioButton("A) Male");

 r2=new JRadioButton("B) Female");

 r1.setBounds(75,50,100,30);

 r2.setBounds(75,100,100,30);

 bg=new ButtonGroup();

 bg.add(r1);bg.add(r2);

 f.add(r1);f.add(r2);

 f.setSize(300,300);

 f.setLayout(null);

 f.setVisible(true);

 }

 public static void main(String[] args)

 {

 new RadioButtonEx();

 }

}

Output

Swing provides different classes to handle the text of different styles using the

Swing model view concept. Basically, Swing's text component deals with two

distinct types of text. One text component deals with simple text of one font and

one color of text. The other type is a styled text with multiple fonts and multiple

colors. The simple type texts are dealt by JTextField, JPasswordField and

JTextArea classes. The styled texts are handled JEditorPane and JTextPane

classes.

JTextField

JTextField is a subclass of JTextComponent, which is a subclass of JComponent

A JTextField object is a visual component that can display one line of editable

text of one font and color at a time. The text is placed inside a box. The

alignment of the text is defined by the following int type constants:

JTextField.LEFT, JTextField.CENTER and JTextField.RIGHT.

The text field component is created using the following constructors:

Constructor Description

JTextField() Creates a new TextField

JTextField(String text) Creates a new TextField initialized with the

specified text.

JTextField(String text, int Creates a new TextField initialized with the

columns) specified text and columns.

JTextField(int columns) Creates a new empty TextField with the

specified number of columns.

Commonly used Methods:

Methods Description

void addActionListener

(ActionListener l)

It is used to add the specified action listener

to receive action events from this textfield.

void setText(String text) It sets specified text as the text for this text

filed.

void setFont(Font f) It is used to set the current font.

String getText() Returns the text contained in this textfield.

void setEditable(boolean edit) Sets the textfield to editable (true) or not

editable(false)

Program 5: JTextField Sample

import javax.swing.*;

class TextFieldExample

{

 JFrame f;

 JTextField t1,t2;

 TextFieldExample()

 {

 f= new JFrame("TextField Example");

 t1=new JTextField("Welcome to Javatpoint.");

 t1.setBounds(50,100, 200,30);

 t2=new JTextField("AWT Tutorial");

 t2.setBounds(50,150, 200,30);

 f.add(t1); f.add(t2);

 f.setSize(400,400);

 f.setLayout(null);

 f.setVisible(true);

 }

 public static void main(String args[])

 {

 new TextFieldExample();

 }

 }

Output

JPasswordField

The JPasswordField creates a display for text field similar to JTextField. The

only difference is that when text is displayed, the actual characters are replaced

by * character. This password field is useful where the text typed by a user is

not to be seen by other people. JPasswordField is a subclass of

JTextComponent. Like in JTextField, only one line a text with one font and

color can be used.

The constructors used for creating password field are given below

Constructor Description

JPasswordField() Creates an empty password field

JPasswordField(int columns) Creates an empty password field with the

specified number of columns

JPassWordField(String text) Create a password field with the specified text

JPasswordField(String text, int

columns)

Create a password field with the specified text

and specified number of columns

JPassword Field has a number of inherited methods and some of is own.

Methods defined for JPasswordField are

Methods Description

boolean echoCharlsSet() Returns true if an echo character has been set

char getEchoChar() Returns the echo character set for this field.

void setEchoChar(char c) Sets the specified character as echo character

for this field

Program 6: JPasswordField Sample

import javax.swing.*;

public class PasswordFieldExample

{

 JFrame f;

 JPasswordField value;

 JLabel l1;

 PasswordFieldExample()

 {

 f=new JFrame("Password Field Example");

 value= new JPasswordField();

 l1=new JLabel("Password:");

 l1.setBounds(20,100, 80,30);

 value.setBounds(100,100,100,30);

 f.add(value); f.add(l1);

 f.setSize(300,300);

 f.setLayout(null);

 f.setVisible(true);

 }

 public static void main(String[] args)

 {

 new PasswordFieldExample ();

 }

}

Output

JText Area

JTextArea is a subclass of JTextComponent. A JTextArea component

displays multiple lines of text in one color and with one font. Text area text is

displayed as such in the defined window. There is no scroll bar to view the text.

If the text is large, then a JScrollPane has to be created using the text area

component.

JTextArea objects are created using the following constructors

Constructor Description

JTextArea() Creates an empty text area

JTextArea(int row, in column) Creates an empty text area with the

specified number of rows and columns that

are visible.

JTextArea(String text, int row,

int column)

Creates a text area with the specified text and

with the specified rows and columns

Commonly used methods are

Methods Description

void setRows(int rows) It is used to set specified number of rows.

void setColumns(int cols) It is used to set specified number of columns.

void setFont(Font f) It is used to set the specified font.

void insert(String s, int position) It is used to insert the specified text on the

specified position.

void append(String s) It is used to append the given text to the end

of the document.

Program 7: JTextArea Sample

import javax.swing.*;

public class TextAreaExample

{

 JFrame f;

 JTextArea area;

 TextAreaExample()

 {

 f= new JFrame();

 area=new JTextArea("Welcome to javatpoint");

 area.setBounds(10,30, 200,200);

 f.add(area);

 f.setSize(300,300);

 f.setLayout(null);

 f.setVisible(true);

 }

 public static void main(String args[])

 {

 new TextAreaExample();

 }

}

Output

JList

JList is part of Java Swing package . JList is a component that displays a set of

Objects and allows the user to select one or more items . JList inherits

JComponent class.

JList objects are created using the following constructors:

Constructor Description

JList() Creates a JList with an empty, read-only, model.

JList(ary[]

listData)

Creates a JList that displays the elements in the specified

array.

Commonly used methods are

Methods Description

getSelectedIndex() returns the index of selected item of the

list

getSelectedValue() returns the selected value of the element

of the list

setSelectedIndex(int i) sets the selected index of the list to i

setSelectionBackground(Color c) sets the background Color of the list

setSelectionForeground(Color c) Changes the foreground color of the list

setVisibleRowCount(int v) Changes the visibleRowCount property

setSelectedValue(Object a, boolean

s)

selects the specified object from the list.

Program 8: JList with event handling example

import javax.swing.*;

import java.awt.event.*;

public class ListSample implements ActionListener

{

 JFrame f;

 JList l1;

 JButton b;

 ListSample()

 {

 f= new JFrame();

 String s[]={"January","February","March","April"};

 l1=new JList(s);

 b=new JButton("Click to select");

 l1.setBounds(100,100, 75,75);

 b.setBounds(200,100, 75,75);

 f.add(l1);

 f.add(b);

 b.addActionListener(this);

 f.setSize(400,400);

 f.setLayout(null);

 f.setVisible(true);

 }

 public void actionPerformed(ActionEvent ae)

 {

 System.out.println(l1.getSelectedIndex());

 System.out.println(l1.getSelectedValue());

 }

 public static void main(String args[])

 {

 new ListSample();

 }

}

Output

JComboBox

JComboBox is a part of Java Swing package. JComboBox inherits JComponent

class. JComboBox shows a popup menu that shows a list and the user can select

an option from that specified list. JComboBox can be editable or read- only

depending on the choice of the programmer.

JComboBox objects are created using the following constructors:

Constructor Description

JComboBox() Creates a JComboBox with a default data

model.

JComboBox(Object[] items) Creates a JComboBox that contains the

elements in the specified array.

JComboBox(Vector<?> items) Creates a JComboBox that contains the

elements in the specified Vector.

Commonly used methods are

Methods Description

void addItem(Object anObject) It is used to add an item to the item

list.

void removeItem(Object anObject) It is used to delete an item to the item

list.

void removeAllItems() It is used to remove all the items from

the list.

void setEditable(boolean b) It is used to determine whether the

JComboBox is editable.

void addActionListener(ActionListener

a)

It is used to add the ActionListener.

void addItemListener(ItemListener i) It is used to add the ItemListener.

getItemAt(int i) returns the item at index i

getItemCount() returns the number of items from the

list

getSelectedItem() returns the item which is selected

removeItemAt(int i) removes the element at index i

https://www.javatpoint.com/array-in-java
https://www.javatpoint.com/scala-vector
https://www.javatpoint.com/java-actionlistener
https://www.javatpoint.com/java-itemlistener

Program 9: JComboBox example

import javax.swing.*;

public class ComboBoxEx

{

 JFrame f;

 ComboBoxEx()

 {

 f=new JFrame("ComboBox Example");

 String country[]=

 {"India","Aus","U.S.A","England","Newzealand"};

 JComboBox cb=new JComboBox(country);

 cb.setBounds(50, 50,90,20);

 f.add(cb);

 f.setLayout(null);

 f.setSize(400,500);

 f.setVisible(true);

 }

 public static void main(String[] args)

 {

 new ComboBoxEx();

 }

}

Output

JPanel

The JPanel is a simplest container class. It provides space in which an

application can attach any other component. It inherits the JComponents class.

The main task of JPanel is to organize components, various layouts can be set in

JPanel which provide better organisation of components, however it does not

have a title bar.

Constructor Description

JPanel() It is used to create a new JPanel with a

double buffer and a flow layout.

JPanel(boolean

isDoubleBuffered)

It is used to create a new JPanel with

FlowLayout and the specified buffering strategy.

JPanel(LayoutManager

layout)

It is used to create a new JPanel with the

specified layout manager.

Program 10: JPanel example

import java.awt.*;

import javax.swing.*;

public class PanelSample

{

 public static void main(String args[])

 {

 JFrame f= new JFrame("Panel Example");

 JPanel p1=new JPanel(new GridLayout(2,1));

 JPanel p2=new JPanel();

 JLabel l1=new JLabel("PANEL 1");

 JButton b1=new JButton("Click here");

 JLabel l2=new JLabel("PANEL 2");

 JButton b2=new JButton("Click");

 p1.setBackground(Color.gray);

 p2.setBackground(Color.green);

 p1.add(l1); p1.add(b1);

 p2.add(l2); p2.add(b2);

 f.add(p1);f.add(p2);

 f.setLayout(new FlowLayout());

 f.setSize(400,400);

 f.setVisible(true);

 }

}

Output

Event Handling

EVENT: - In programming terms, an event is when something special happens.

An event generally occurs when something changes within a graphical user

interface. For forms, this means things like buttons being clicked, the mouse

moving, text being entered into text fields, the programming closing, and a lot

more. Events are objects in Java.

The graphical component generating the event is known as an event source.

The event source will then send out an event object - it will contain information

about the event.

The event object gets processed by an event listener assigned to the event

source. Different types of graphical components have different types of event

listeners.

Delegation Event model

The modern approach to handling events is based on the delegation event

model, which defines standard and consistent mechanisms to generate and

process events. Its concept is defined as follows: a source generates an event

and sends it to one or more listeners. In this scheme, the listener simply

waits until it receives an event. Once an event is received, the listener

processes the event and then returns.

 The advantage of this design is that the application logic that processes events

is cleanly separated from the user interface logic that generates those events. A

user interface element is able to “delegate” the processing of an event to a

separate piece of code. In the delegation event model, listeners must register

with a source in order to receive an event notification. This provides an

important benefit: notifications are sent only to listeners that want to receive

them.

Events

In the delegation model, an event is an object that describes a state change in a

source. It can be generated as a consequence of a person interacting with the

elements in a graphical user interface. Some of the activities that cause events to

be generated are pressing a button, entering a character via the keyboard,

selecting an item in a list, and clicking the mouse. Many other user operations

could also be cited as examples.

Events may also occur that are not directly caused by interactions with a user

interface.

For example, an event may be generated when a timer expires, a counter

exceeds a value, a software or hardware failure occurs, or an operation is

completed. You are free to define events that are appropriate for your

application.

Event Sources

A source is an object that generates an event. This occurs when the internal state

of that object changes in some way. Sources may generate more than one type

of event. A source must register listeners in order for the listeners to receive

notifications about a specific type of event. Each type of event has its own

registration method. Here is the general form:

public void addTypeListener(TypeListener el)

Here, Type is the name of the event, and el is a reference to the event listener.

For example, the method that registers a keyboard event listener is called

addKeyListener(). The method that registers a mouse motion listener is called

addMouseMotionListener(). When an event occurs, all registered listeners are

notified and receive a copy of the event object. This is known as multicasting

the event. In all cases, notifications are sent only to listeners that register to

receive them. Some sources may allow only one listener to register.

Event Listeners

A listener is an object that is notified when an event occurs. It has two major

requirements. First, it must have been registered with one or more sources to

receive notifications about specific types of events. Second, it must implement

methods to receive and process these notifications. The methods that receive

and process events are defined in a set of interfaces found in java.awt.event.

Event classes

The classes that represent events are at the core of Java’s event handling

mechanism. Main classes in java.awt.event are listed below.

Event class Description

ActionEvent Generated when a button is pressed, a list item is double-

clicked, or a menu item is selected.

AdjustmentEvent Generated when a scroll bar is manipulated.

ComponentEvent Generated when a component is hidden, moved, resized,

or becomes visible.

ContainerEvent Generated when a component is added to or removed

from a container.

FocusEvent Generated when a component gains or loses keyboard

focus.

InputEvent Abstract superclass for all component input event

classes.

ItemEvent Generated when a check box or list item is clicked; also

occurs when a choice selection is made or a checkable

menu item is selected or deselected.

KeyEvent Generated when input is received from the keyboard.

MouseEvent Generated when the mouse is dragged, moved, clicked,

pressed, or released; also generated when the mouse

enters or exits a component.

MouseWheelEvent Generated when the mouse wheel is

moved.

TextEvent Generated when the value of a text area or text field is

changed.

WindowEvent Generated when a window is activated, closed,

deactivated, deiconified, iconified, opened, or quit.

The ActionEvent Class

An ActionEvent is generated when a button is pressed, a list item is double-

clicked, or a menu item is selected. The ActionEvent class defines four integer

constants that can be used to identify any modifiers associated with an action

event: ALT_MASK, CTRL_MASK, META_MASK, and SHIFT_MASK. In

addition, there is an integer constant, ACTION_PERFORMED, which can be

used to identify action events.

ActionEvent has these three constructors:

ActionEvent(Object src, int type, String cmd)

ActionEvent(Object src, int type, String cmd, int modifiers)

ActionEvent(Object src, int type, String cmd, long when, int modifiers)

Here, src is a reference to the object that generated this event. The type of the

event is specified by type, and its command string is cmd. The argument

modifiers indicates which modifier keys (ALT, CTRL, META, and/or SHIFT)

were pressed when the event was generated. The when parameter specifies

when the event occurred. You can obtain the command name for the invoking

ActionEvent object by using the getActionCommand() method, shown here:

String getActionCommand()

For example, when a button is pressed, an action event is generated that has a

command name equal to the label on that button.

The getModifiers() method returns a value that indicates which modifier keys

(ALT, CTRL, META, and/or SHIFT) were pressed when the event was

generated. Its form is shown here:

int getModifiers()

The method getWhen() returns the time at which the event took place. This is

called the event’s timestamp. The getWhen() method is shown here:

long getWhen()

The FocusEvent Class

A FocusEvent is generated when a component gains or loses input focus. These

events are identified by the integer constants FOCUS_GAINED and

FOCUS_LOST. FocusEvent is a subclass of ComponentEvent and has these

constructors:

FocusEvent(Component src, int type)

FocusEvent(Component src, int type, boolean temporaryFlag)

FocusEvent(Component src, int type, boolean temporaryFlag, Component

other)

Here, src is a reference to the component that generated this event. The type of

the event is specified by type. The argument temporaryFlag is set to true if the

focus event is temporary.

Otherwise, it is set to false. (A temporary focus event occurs as a result of

another user interface operation. For example, assume that the focus is in a text

field. If the user moves the mouse to adjust a scroll bar, the focus is temporarily

lost.)

The other component involved in the focus change, called the opposite

component, is passed in other. Therefore, if a FOCUS_GAINED event

occurred, other will refer to the component that lost focus. Conversely, if a

FOCUS_LOST event occurred, other will refer to the component that gains

focus.

The ItemEvent Class

An ItemEvent is generated when a check box or a list item is clicked or when a

checkable menu item is selected or deselected. There are two types of item

events, which are identified by the following integer constants:

DESELECTED - The user deselected an item.

SELECTED- The user selected an item.

In addition, ItemEvent defines one integer constant,

ITEM_STATE_CHANGED, that signifies a change of state.

ItemEvent has this constructor:

ItemEvent(ItemSelectable src, int type, Object entry, int state)

Here, src is a reference to the component that generated this event. For example,

this might be a list or choice element. The type of the event is specified by type.

The specific item that generated the item event is passed in entry. The current

state of that item is in state

The KeyEvent Class

A KeyEvent is generated when keyboard input occurs. There are three types of

key events, which are identified by these integer constants: KEY_PRESSED,

KEY_RELEASED, and KEY_TYPED. The first two events are generated

when any key is pressed or released. The last event occurs only when a

character is generated. Remember, not all keypresses result in characters. For

example, pressing SHIFT does not generate a character.There are many other

integer constants that are defined by KeyEvent. Here is one of its constructors:

KeyEvent(Component src, int type, long when, int modifiers, int code, char ch)

Here, src is a reference to the component that generated the event. The type of

the event is specified by type. The system time at which the key was pressed is

passed in when. The modifiers argument indicates which modifiers were pressed

when this key event occurred. The virtual key code is passed in code. The

character equivalent is passed in ch. If no valid character exists, then ch

contains CHAR_UNDEFINED. The KeyEvent class defines several methods,

but the most commonly used ones are getKeyChar(), which returns the

character that was entered, and getKeyCode(), which returns the key code.

Their general forms are shown here:

char getKeyChar()

int getKeyCode()

If no valid character is available, then getKeyChar() returns

CHAR_UNDEFINED. When a KEY_TYPED event occurs, getKeyCode()

returns VK_UNDEFINED.

The MouseEvent Class

There are eight types of mouse events. The MouseEvent class defines the

following integer constants that can be used to identify them:

MOUSE_CLICKED -The user clicked the mouse.

MOUSE_DRAGGED -The user dragged the mouse.

MOUSE_ENTERED -The mouse entered a component.

MOUSE_EXITED -The mouse exited from a component.

MOUSE_MOVED -The mouse moved.

MOUSE_PRESSED- The mouse was pressed.

MOUSE_RELEASED- The mouse was released.

MOUSE_WHEEL -The mouse wheel was moved.

MouseEvent is a subclass of InputEvent. Here is one of its constructors:

MouseEvent(Component src, int type, long when, int modifiers, int x, int y,

int clicks, boolean triggersPopup)

Here, src is a reference to the component that generated the event. The type of

the event is specified by type. The system time at which the mouse event

occurred is passed in when. The modifiers argument indicates which modifiers

were pressed when a mouse event occurred. The coordinates of the mouse are

passed in x and y. The click count is passed in clicks. The triggersPopup flag

indicates if this event causes a pop-up menu to appear on this platform.

Two commonly used methods in this class are getX() and getY(). These return

the X and Y coordinates of the mouse within the component when the event

occurred. Their forms are shown here:

int getX()

int getY()

Alternatively, you can use the getPoint() method to obtain the coordinates of

the mouse. It is shown here:

Point getPoint()

It returns a Point object that contains the X,Y coordinates in its integer

members: x and y.

The WindowEvent Class

There are ten types of window events. The WindowEvent class defines integer

constants that can be used to identify them. The constants and their meanings

are shown here:

WindowEvent is a subclass of ComponentEvent. It defines several

constructors. The first is

WindowEvent(Window src, int type)

Here, src is a reference to the object that generated this event. The type of the

event is type.

The next three constructors offer more detailed control:

WindowEvent(Window src, int type, Window other)

WindowEvent(Window src, int type, int fromState, int toState)

WindowEvent(Window src, int type, Window other, int fromState, int toState)

Sources of Events

Following Table lists some of the user interface components that can generate

the events described

Event Listener Interfaces

As explained, the delegation event model has two parts: sources and listeners.

Listeners are created by implementing one or more of the interfaces defined by

the java.awt.event package. When an event occurs, the event source invokes

the appropriate method defined by the listener and provides an event object as

its argument.

The ActionListener Interface

This interface defines the actionPerformed() method that is invoked when an

action event occurs. Its general form is shown here:

void actionPerformed(ActionEvent ae)

The FocusListener Interface

This interface defines two methods. When a component obtains keyboard focus,

focusGained() is invoked. When a component loses keyboard focus,

focusLost() is called. Their general forms are shown here:

void focusGained(FocusEvent fe)

void focusLost(FocusEvent fe)

The ItemListener Interface

This interface defines the itemStateChanged() method that is invoked when

the state of an item changes. Its general form is shown here:

void itemStateChanged(ItemEvent ie)

The KeyListener Interface

This interface defines three methods. The keyPressed() and keyReleased()

methods are invoked when a key is pressed and released, respectively. The

keyTyped() method is invoked when a character has been entered.

For example, if a user presses and releases the A key, three events are generated

in sequence:

key pressed, typed, and released. If a user presses and releases the HOME key,

two key events

are generated in sequence: key pressed and released.

The general forms of these methods are shown here:

void keyPressed(KeyEvent ke)

void keyReleased(KeyEvent ke)

void keyTyped(KeyEvent ke)

The MouseListener Interface

This interface defines five methods. If the mouse is pressed and released at the

same point, mouseClicked() is invoked. When the mouse enters a component,

the mouseEntered() method is called. When it leaves, mouseExited() is

called. The mousePressed() and mouseReleased() methods are invoked when

the mouse is pressed and released, respectively.

The general forms of these methods are shown here:

void mouseClicked(MouseEvent me)

void mouseEntered(MouseEvent me)

void mouseExited(MouseEvent me)

void mousePressed(MouseEvent me)

void mouseReleased(MouseEvent me)

The MouseMotionListener Interface

This interface defines two methods. The mouseDragged() method is called

multiple times as the mouse is dragged. The mouseMoved() method is called

multiple times as the mouse is moved. Their general forms are shown here:

void mouseDragged(MouseEvent me)

void mouseMoved(MouseEvent me)

The WindowListener Interface

This interface defines seven methods. The windowActivated() and

windowDeactivated() methods are invoked when a window is activated or

deactivated, respectively. If a window is iconified, the windowIconified()

method is called. When a window is deiconified, the windowDeiconified()

method is called. When a window is opened or closed, the windowOpened() or

windowClosed() methods are called, respectively. The windowClosing()

method is called when a window is being closed. The general forms of these

methods are

void windowActivated(WindowEvent we)

void windowClosed(WindowEvent we)

void windowClosing(WindowEvent we)

void windowDeactivated(WindowEvent we)

void windowDeiconified(WindowEvent we)

void windowIconified(WindowEvent we)

void windowOpened(WindowEvent we)

