
Java Programming - Module 1

1

Object Oriented Programming

Object Oriented Programming (OOP) is a programming concept used in several

modern programming languages, like C++, Java and Python. Before Object

Oriented Programming, programs were viewed as procedures that accepted data

and produced an output. There was little emphasis given on the data that went

into those programs. Object Oriented Programming works on the principle that

objects are the most important part of your program. Manipulating these objects

to get results is the goal of Object Oriented Programming.

Object Oriented Programming also addresses several other weaknesses of the

other programming techniques (unstructured, procedural and modular). Object-

oriented programming (OOP) is a programming paradigm based on the concept

of "objects", which may contain data, in the form of fields, often known as

attributes; and code, in the form of procedures, often known as methods.

For example, a person is an object which has certain properties such as height,

gender, age, etc. It also has certain methods such as move, talk, and so on.

Definition: Object Oriented Programming is an approach that provides a way

of modularizing programs by creating partitioned memory area for both data

and functions that can be used as templates for creating copies of such

modules on demand.

Basic Concepts of Object Oriented Programming

1. Object

An entity that has state and behaviour is known as an object. e.g., chair, bike,

marker, pen, table, car, etc. It can be physical or logical (tangible and

intangible). The example of an intangible object is the banking system.

An object has three characteristics:

 State: represents the data (value) of an object.

 Behaviour: represents the behaviour (functionality) of an object such as

deposit, withdraw, etc.

Java Programming - Module 1

2

 Identity: An object identity is typically implemented via a unique ID. The

value of the ID is not visible to the external user. However, it is used

internally by the JVM to identify each object uniquely.

For Example, Pen is an object. Its name is Reynolds; color is white, known as

its state. It is used to write, so writing is its behaviour.

An object is an instance of a class. A class is a template or blueprint from which

objects are created. So, an object is the instance (result) of a class.

Object Definitions:

 An object is a real-world entity.

 An object is a runtime entity.

 The object is an entity which has state and behaviour.

 The object is an instance of a class.

2. Class

A class is a group of objects which have common properties. It is a template or

blueprint from which objects are created. It is a logical entity. It can't be

physical.

Another Definition: A class is a user defined blueprint or prototype from which

objects are created. It represents the set of properties or methods that are

common to all objects of one type.

A class in Java can contain:

 Fields

 Methods

 Constructors

 Blocks

 Nested class and interface

3. Abstraction

It refers to, providing only essential information to the outside world and hiding

their background details. For example, a web server hides how it processes data

it receives, the end user just hits the endpoints and gets the data back.

Java Programming - Module 1

3

4. Encapsulation

Encapsulation is a process of binding data members (variables, properties) and

member functions (methods) into a single unit. It is also a way of restricting

access to certain properties or component. The best example for encapsulation is

a class.

5. Inheritance

The ability to create a new class from an existing class is called Inheritance.

Using inheritance, we can create a Child class from a Parent class such that it

inherits the properties and methods of the parent class and can have its own

additional properties and methods. For example, if we have a class Vehicle that

has properties like Color, Price, etc, we can create 2 classes like Bike and Car

from it that have those 2 properties and additional properties that are specialized

for them like a car has numberOfWindows while a bike cannot. Same is

applicable to methods.

6. Polymorphism

The word polymorphism means having many forms. Typically, polymorphism

occurs when there is a hierarchy of classes and they are related by inheritance.

Polymorphism means that a call to a member function will cause a different

function to be executed depending on the type of object that invokes the

function.

Benefits of Object Oriented Programming

1. Re-usability: It means reusing some facilities rather than building it again

and again. This is done with the use of a class. Programmer can use it „n‟

number of times as per his requirement.

2. Data Redundancy: This is a condition created at the place of data storage

(you can say Databases) where the same piece of data is held in two separate

places. So the data redundancy is one of the greatest advantages of OOP. If a

user wants a similar functionality in multiple classes he/she can go ahead by

Java Programming - Module 1

4

writing common class definitions for the similar functionalities and inherit

them.

3. Code Maintenance: This feature is more of a necessity for any programming

languages; it helps users from doing re-work in many ways. It is always easy

and time-saving to maintain and modify the existing codes with incorporating

new changes into it.

4. Security: With the use of data hiding and abstraction mechanism, we are

filtering out limited data to exposure which means we are maintaining security

and providing necessary data to view.

5. Design Benefits: Object Oriented Programs forces the designers to have a

longer and extensive design phase, which results in better designs and fewer

flaws.

6. Better productivity: The above-mentioned features of OOP enhances its

users overall productivity. This leads to more work done, finish a better

program, having more inbuilt features and easier to read, write and maintain. An

OOP programmer cans stitch new software objects to make completely new

programs. A good number of libraries with useful functions make it possible.

Features of Java

 Object Oriented : In Java, everything is an Object. Java can be easily

extended since it is based on the Object model.

 Platform Independent :Unlike many other programming languages

including C and C++, when Java is compiled, it is not compiled into

platform specific machine, rather into platform-independent byte code.

This byte code is distributed over the web and interpreted by the Virtual

Machine (JVM) on whichever platform it is being run on.

 Simple: Java is designed to be easy to learn. If you understand the basic

concept of OOP Java, it would be easy to master.

Java Programming - Module 1

5

 Secure: With Java's secure feature it enables to develop virus-free,

tamper-free systems. Authentication techniques are based on public-key

encryption.

 Architecture-neutral: Java compiler generates an architecture-neutral

object file format, which makes the compiled code executable on many

processors, with the presence of Java runtime system.

 Portable:Being architecture-neutral and having no implementation

dependent aspects of the specification makes Java portable. The compiler

in Java is written in ANSI C with a clean portability boundary.

 Robust :Java makes an effort to eliminate error-prone situations by

emphasizing mainly on compile time error checking and runtime

checking.

 Multithreaded : With Java's multithreaded feature it is possible to write

programs that can perform many tasks simultaneously. This design

feature allows the developers to construct interactive applications that can

run smoothly.

 Interpreted: Java byte code is translated on the fly to native machine

instructions and is not stored anywhere. The development process is more

rapid and analytical since the linking is an incremental and light-weight

process.

 High Performance: With the use of Just-In-Time compilers, Java

enables high performance.

 Distributed: Java is designed for the distributed environment of the

internet.

 Dynamic : Java is considered to be more dynamic than C or C++ since it

is designed to adapt to an evolving environment. Java programs can carry

an extensive amount of run-time information that can be used to verify

and resolve accesses to objects at run-time.

Java Programming - Module 1

6

History of Java

Java was originally designed for interactive television, but it was too advanced

technology for the digital cable television industry at the time. The history of

Java starts with the Green Team. Java team members (also known as Green

Team), initiated this project to develop a language for digital devices such as

set-top boxes, televisions, etc. However, it was suited for internet programming.

Later, Java technology was incorporated by Netscape.

The principles for creating Java programming were "Simple, Robust, Portable,

Platform-independent, Secured, High Performance, Multithreaded, Architecture

Neutral, Object-Oriented, Interpreted, and Dynamic". Java was developed by

James Gosling, who is known as the father of Java, in 1995.

James Gosling, Mike Sheridan, and Patrick Naughton initiated the Java

language project in June 1991. The small team of sun engineers called Green

Team. Initially designed for small, embedded systems in electronic appliances

like set-top boxes. Firstly, it was called "Greentalk" by James Gosling, and the

file extension was .gt. After that, it was called Oak and was developed as a part

of the Green project. Oak is a symbol of strength and chosen as a national tree

of many countries like the U.S.A., France, Germany, Romania, etc. In 1995,

Oak was renamed as "Java" because it was already a trademark by Oak

Technologies.

Currently, Java is used in internet programming, mobile devices, games, e-

business solutions, etc. There are given significant points that describe the

history of Java.

Java Environment

The Java Runtime Environment (JRE) is a set of software tools for development

of Java applications. It combines the Java Virtual Machine (JVM), platform

core classes and supporting libraries. JRE is part of the Java Development Kit

(JDK), but can be downloaded separately.

The JVM is an abstract computing machine, having an instruction set that uses

memory. Virtual machines are often used to implement a programming

language. The JVM is the cornerstone of the Java programming language. It is

Java Programming - Module 1

7

responsible for Java's cross-platform portability and the small size of its

compiled code.

The JVM is used to execute Java applications. The Java compiler, javac, outputs

bytecodes and puts them into a .class file. The JVM then interprets these

bytecodes, which can then be executed by any JVM implementation, thus

providing Java's cross-platform portability. The next two figures illustrate the

new portable Java compile-time environment.

Java JIT compiler, an integral part of the JVM, can accelerate execution

performance many times over previous levels. Long-running, compute-intensive

programs show the best performance improvement.

When the JIT compiler environment variable is on (the default), the JVM reads

the .class file for interpretation and passes it to the JIT compiler. The JIT

compiler then compiles the bytecodes into native code for the platform on

which it is running.

Java Tokens

Java Programming - Module 1

8

 A token is the smallest element of a program that is meaningful to the compiler.

Tokens can be classified as follows:

 Keywords

 Identifiers

 Literals

 Operators

 Separators

Keywords

Keywords are pre-defined or reserved words in a programming language. Each

keyword is meant to perform a specific function in a program. Since keywords

are referred names for a compiler, they can‟t be used as variable names because

by doing so, we are trying to assign a new meaning to the keyword which is not

allowed. Java language supports following keywords:

abstract continue for new switch

assert default goto package synchronized

boolean do if private this

break double implements protected throw

byte else import public throws

case enum instanceof return transient

catch extends int short try

char final interface static void

class finally long strictfp volatile

const float native super while

Identifiers

Identifiers are used as the general terminology for naming of variables,

functions and arrays. These are user-defined names consisting of an arbitrarily

long sequence of letters and digits with either a letter or the underscore (_) as a

first character. Identifier names must differ in spelling and case from any

keywords. Keywords cannot be used as identifiers; they are reserved for special

use. Once declared, you can use the identifier in later program statements to

refer to the associated value. A special kind of identifier, called a statement

label, can be used in goto statements.

Java Programming - Module 1

9

Example : MyVariable , MYVARIABLE ,myvariable ,x,I,x1,i1,_myvariable,

$myvariable, sum_of_array , geeks123

Examples of invalid identifiers :

My Variable // contains a space

123geeks // Begins with a digit

a+c // plus sign is not an alphanumeric character

variable-2 // hyphen is not an alphanumeric character

sum_&_difference // ampersand is not an alphanumeric character

Literals

Literals in java are sequence of characters that represent constant values to be

stored in variables. Java language specifies five major types of literals. They are

Integer literals, floating point literals, character literals, string literals and

Boolean literals. Each of them has type associated with it. The type describe

how the values behave and how they are stored.

Operators

Java provides many types of operators which can be used according to the need.

They are classified based on the functionality they provide. Some of the types

are Arithmetic Operators, Unary Operators, Assignment Operator, Relational

Operators, Logical Operators, Ternary Operator, Bitwise Operators, Shift

Operators and instance of operator.

Separators

A separator is a symbol that is used to separate a group of code from one

another is called as separators in java. In java, there are few characters that are

used as a separator. The most commonly used separator is a semicolon.

Symbol Name Purpose

() Parentheses

Used to enclose an argument in the method

definition. Also used for defining the

expression in control statements.

Java Programming - Module 1

10

{} Braces

Used to define a block of code for classes and

methods. Also used to contain the values of

arrays.

[] Brackets Used to declare an array type. Also used when

dereferencing array values.

; Semicolon Used to separate or terminate the statement.

, Comma Used to separate identifiers (or) Variable

declarations. Also used to chain statements

together inside a for a statement.

.
Period

Used to separate package names from sub-

packages and classes. Also used to separate a

variable or method from a reference variable.

Variables

A variable is an identifier that denotes a piece of memory that can store a data

value. A variable thus has a data type. Variables are typically used to store

information which a program needs to do its job. This can be any kind of

information ranging from texts, numbers, temporary results of multi step

calculations etc.

Syntax for declaring a variable is datatype variable_name ;

Eg: int num;

Rules for naming variables:

 All variable names must begin with a letter of the alphabet, an

underscore, or (_), or a dollar sign ($).

 After the first initial letter, variable names may also contain letters and

the digits 0 to 9. No spaces or special characters are allowed.

 The name can be of any length.

Java Programming - Module 1

11

 Uppercase characters are distinct from lowercase characters. Using ALL

uppercase letters are primarily used to identify constant variables.

Variable names are case-sensitive.

 You cannot use a java keyword (reserved word) for a variable name.

Data Types

Data type defines the values that a variable can take, for example if a variable

has int data type, it can only take integer values. In java we have two categories

of data types : Primitive data types and Non-primitive data types.

Primitive data types: The primitive data types include boolean, char, byte, short,

int, long, float and double.

Non-primitive data types: The non-primitive data types include Classes, Arrays

and Strings.

Java Primitive Data Types

In Java language, primitive data types are the building blocks of data

manipulation. These are the most basic data types available in Java language.

Java is a statically-typed programming language. It means, all variables must be

declared before its use. That is why we need to declare variable's type and

name. Primitive data types in java with their size and default value are given in

the table below.

Java Programming - Module 1

12

Data Type Default Value Default size

boolean false 1 bit

char '\u0000' 2 byte

byte 0 1 byte

short 0 2 byte

int 0 4 byte

long 0L 8 byte

float 0.0f 4 byte

double 0.0d 8 byte

Operators

Java provides a rich set of operators to manipulate variables. Operators are

special symbols that carry out operations on operands (variables and values).

Java operators can be classified into a number of related categories as

1. Arithmetic operators

2. Relational operators

3. Logical operators

4. Assignment operators

5. Increment/decrement operators (Unary operators)

6. Conditional operators

7. Bitwise operators

8. Special operators

1. Arithmetic operators

Arithmetic operators are used to perform mathematical operations like addition,

subtraction, multiplication, etc. Arithmetic operators are binary operators and

are used in mathematical expressions in the same way that they are used in

algebra.

Operator Meaning

+ Addition (also used for string concatenation)

- Subtraction Operator

* Multiplication Operator

/ Division Operator

% Remainder Operator

Java Programming - Module 1

13

Example 1-Arithmentic operators

class ArithmenticOp {

 public static void main(String args[])

 {

 int a = 10, b = 20,c = 25, d = 25;

 System.out.println("a + b = " + (a + b));

 System.out.println("a - b = " + (a - b));

 System.out.println("a * b = " + (a * b));

 System.out.println("b / a = " + (b / a));

 System.out.println("b % a = " + (b % a));

 System.out.println("c % a = " + (c % a));

 }

}

Output

a + b = 30

a - b = -10

a * b = 200

b / a = 2

b % a = 0

c % a = 5

2. Relational Operators

Relational operators determine the relationship between the two operands. It

checks if an operand is greater than, less than, equal to, not equal to and so on.

Depending on the relationship, it is evaluated to either true or false. Following

are relational operators supported by Java language.

Operator Description

== (equal to)
Checks if the values of two operands are equal or

not, if yes then condition becomes true.

Java Programming - Module 1

14

!= (not equal to)

Checks if the values of two operands are equal or

not, if values are not equal then condition becomes

true.

> (greater than)

Checks if the value of left operand is greater than the

value of right operand, if yes then condition becomes

true.

< (less than)

Checks if the value of left operand is less than the

value of right operand, if yes then condition becomes

true.

>=

(greater than or equal to)

Checks if the value of left operand is greater than or

equal to the value of right operand, if yes then

condition becomes true.

<=

(less than or equal to)

Checks if the value of left operand is less than or

equal to the value of right operand, if yes then

condition becomes true.

Example 2-Relational operators

class RelationalOp

 {

 public static void main(String args[])

 {

 int a = 10, b = 20;

 System.out.println("a == b = " + (a == b));

 System.out.println("a != b = " + (a != b));

 System.out.println("a > b = " + (a > b));

 System.out.println("a < b = " + (a < b));

 System.out.println("b >= a = " + (b >= a));

 System.out.println("b <= a = " + (b <= a));

 }

}

Java Programming - Module 1

15

Output

a == b = false

a != b = true

a > b = false

a < b = true

b >= a = true

b <= a = false

3. Logical Operators

These operators are used to perform “logical AND” and “logical OR” operation,

i.e. the function similar to AND gate and OR gate in digital electronics. These

are binary operators and the second condition is not evaluated if the first one is

false. They are used extensively to test for several conditions for making a

decision. "logical NOT" operator is a unary logical operator used for inverting a

boolean value.

Operator Description

&& (logical and)
Called Logical AND operator. If both the operands are

non-zero, then the condition becomes true.

|| (logical or)
Called Logical OR Operator. If any of the two operands

are non-zero, then the condition becomes true.

! (logical not)

Called Logical NOT Operator. Use to reverses the logical

state of its operand. If a condition is true then Logical

NOT operator will make false.

Example 3-Logical operators

class LogicalOp

{

 public static void main(String args[])

{

 boolean a = true, b = false;

 System.out.println("a && b = " + (a&&b));

Java Programming - Module 1

16

 System.out.println("a || b = " + (a||b));

 System.out.println("!(a && b) = " + !(a && b));

 }

}

Output

a && b = false

a || b = true

!(a && b) = true

4. Assignment Operators

Assignment operators are used in Java to assign values to variables. For

example,

int age;

age = 5;

The assignment operator assigns the value on its right to the variable on its left.

Here, 5 is assigned to the variable age using = operator.

Example 4-Assignment operators

class AssignmentOperator

 {

 public static void main(String[] args)

 {

 int number1, number2;

 number1 = 5; // Assigning 5 to number1

 System.out.println(number1);

 number2 = number1; // Assigning value of variable number2 to number1

 System.out.println(number2);

 }

}

Output

5

5

Java Programming - Module 1

17

Java provides some special Compound Assignment Operators, also known as

Shorthand Assignment Operators. It's called shorthand because it provides a

short way to assign an expression to a variable. This operator can be used to

connect Arithmetic operator with an Assignment operator.

For example, you write a statement:

a = a+6;

In Java, you can also write the above statement like this:

a += 6;

There are various compound assignment operators used in Java:

Operator Meaning

+= Increments then assigns

-= Decrements then assigns

*= Multiplies then assigns

/= Divides then assigns

%= Modulus then assigns

5. Increment/decrement Operators

Increment and decrement unary operator works as follows:

Syntax

val++;

val--;

These two operators have two forms: Postfix and Prefix. Both do increment or

decrement in appropriate variables. These two operators can be placed before or

after of variables. When it is placed before the variable, it is called prefix. And

when it is placed after, it is called postfix.

Following example table, demonstrates the work of Increment and decrement

operators with postfix and prefix:

Example Description

val = a++; Store the value of "a" in "val" then increments.

Java Programming - Module 1

18

val = a--; Store the value of "a" in "val" then decrements.

val = ++a; Increments "a" then store the new value of "a" in "val".

val = --a; Decrements "a" then store the new value of "a" in "val".

Example 5-Increment/Decrement operators

class OperatorExample

{

public static void main(String args[])

{

int x=10;

System.out.println(x++);//10 (11)

System.out.println(++x);//12

System.out.println(x--);//12 (11)

System.out.println(--x);//10

}

}

Output:

10

12

12

10

Example 6-Increment/Decrement operators

class OperatorExample1

{

public static void main(String args[])

{

int a=10;

int b=10;

System.out.println(a++ + ++a);//10+12=22

System.out.println(b++ + b++);//10+11=21

Java Programming - Module 1

19

 }

}

Output:

22

21

6. Conditional Operators

The Java Conditional Operator selects one of two expressions for evaluation,

which is based on the value of the first operands. It is also called ternary

operator because it takes three arguments. The conditional operator is used to

handling simple situations in a line.

Syntax

expression1 ? expression2:expression3;

The above syntax means that if the value given in Expression1 is true, then

Expression2 will be evaluated; otherwise, expression3 will be evaluated.

Example 7-Ternary operator

class TernaryOperator

{

public static void main(String args[])

{

int a=10;

int b=5;

int min=(a<b)?a:b;

System.out.println(min);

}

}

Output:

5

Java Programming - Module 1

20

7. Bitwise operators

The Java Bitwise Operators allow access and modification of a particular bit

inside a section of the data. It can be applied to integer types and bytes, and

cannot be applied to float and double. Bitwise operator works on bits and

performs bit-by-bit operation.

Assume if a = 60 and b = 13; now in binary format they will be as follows −

a = 0011 1100

b = 0000 1101

a&b = 0000 1100

a|b = 0011 1101

a^b = 0011 0001

~a = 1100 0011

The following table lists the bitwise operators −

Operator Meaning Work

& Binary AND Operator

Binary & operator work very much the

same as logical && operators works,

except it works with two bits instead of

two expressions. The "Binary AND

operator" returns 1 if both operands are

equal to 1.

| Binary OR Operator

Binary | Operator work similar to logical

|| operators works, except it, works with

two bits instead of two expressions. The

"Binary OR operator" returns 1 if one of

its operands evaluates as 1. if either or

both operands evaluate to 1, the result is

1.

Java Programming - Module 1

21

^ Binary XOR Operator

It stands for "exclusive OR" and means

"one or the other", but not both. The

"Binary XOR operator" returns 1 if and

only if exactly one of its operands is 1.

If both operands are 1, or both are 0,

then the result is 0.

~
BinaryComplement

Operator

Binary Ones Complement Operator is

unary and has the effect of 'flipping'

bits.

<< Binary Left Shift Operator

The left operands value is moved left by

the number of bits specified by the right

operand.

>> Binary Right Shift Operator

The left operands value is moved right

by the number of bits specified by the

right operand.

>>> Shift right zero fill operator

The left operands value is moved right

by the number of bits specified by the

right operand and shifted values are

filled up with zeros.

Example 8-Bitwise operators

class bitwiseop

 {

 public static void main(String[] args)

{

 //Variables Definition and Initialization

 int num1 = 30, num2 = 6, num3 =0;

 //Bitwise AND

 System.out.println("num1 & num2 = " + (num1 & num2));

Java Programming - Module 1

22

 //Bitwise OR

 System.out.println("num1 | num2 = " + (num1 | num2));

 //Bitwise XOR

 System.out.println("num1 ^ num2 = " + (num1 ^ num2));

 //Binary Complement Operator

 System.out.println("~num1 = " + ~num1);

 //Binary Left Shift Operator

 num3 = num1 << 2;

 System.out.println("num1 << 1 = " + num3);

 //Binary Right Shift Operator

 num3 = num1 >> 2;

 System.out.println("num1 >> 1 = " + num3);

 //Shift right zero fill operator

 num3 = num1 >>> 2;

 System.out.println("num1 >>> 1 = " + num3);

 }

}

Output

num1 & num2 = 6

num1 | num2 = 30

num1 ^ num2 = 24

~num1 = -31

num1 << 1 = 120

num1 >> 1 = 7

num1 >>> 1 = 7

Java Programming - Module 1

23

8. Special operators

instanceof operator

The Java instanceof Operator is used to determining whether this object belongs

to this particular class or not. This operator gives the boolean values such as

true or false. If the object referred by the variable on the left side of the operator

passes the IS-A check for the class type on the right side, then the result will be

true. Otherwise, it returns false as output.

Syntax

object-reference instanceof type;

Example 9-Special operators

class SpecialOp

{

 public static void main(String args[])

 {

 String name = "James";

 // following will return true since name is type of String

 boolean result = name instanceof String;

 System.out.println(result);

 }

}

Output

true

dot operator

The dot operator, also known as separator or period used to separate a variable

or method from a reference variable.

Java Programming - Module 1

24

Control Statements

A control statement in java is a statement that determines whether the other

statements will be executed or not. It controls the flow of a program. Statements

inside a program are usually executed sequentially. Sometimes a programmer

wants to break the normal flow and jump to another statement or execute a set

of statements repeatedly. Statements in java which breaks the normal sequential

flow of the program are called control statements. Control statements in java

enables decision making, looping and branching. Statements that determine

which statement to execute and when are known as decision-making

statements.

Decision making and Branching

Decision making structures have one or more conditions to be evaluated or

tested by the program, along with a statement or statements that are to be

executed if the condition is determined to be true, and optionally, other

statements to be executed if the condition is determined to be false. Java

programming language provides following types of decision making statements.

 if statements

 switch statement

 conditional operator

if statements

Java if statement is used to test the condition. It checks boolean condition: true

or false. There are various types of if statement in Java.

1. Simple if statement

Simple if statement tests the condition. It executes if block if condition is true.

Syntax is

if(condition)

{

Statement –block;

}

statement-x;

Java Programming - Module 1

25

The Statement –block may be a single statement or a group of statements. If

the condition is true, Statement –block will be executed; otherwise Statement

–block will be skipped and execution will jump to statement-x. When the

condition is true both Statement –block and statement –x are executed in

sequence.

Example 10: Simple if statement

class IfExample

{

public static void main(String[] args)

{

 int age=20; //defining an 'age' variable

 if(age>18) //checking the age

 {

 System.out.print("Age is greater than 18");

 }

}

}

Output

Age is greater than 18

2. if-else statement

The Java if-else statement also tests the condition. It executes if block if

condition is true otherwise else block is executed.

Syntax is

if(condition)

{

True-block Statements;

}

else

{

 False-block Statements;

}

statement-x;

Java Programming - Module 1

26

If the condition is true, then True-block Statements immediately following if

statement, are executed; otherwise False-block Statements are executed. In

either case, either True-block Statements or False-block Statements will be

executed, not both. In both cases control is transferred subsequently to the

statement-x.

Example 11: if… else statement

class IfElseExample

{

public static void main(String[] args)

 {

 int number=13; //defining a variable

 if(number%2==0) //Check if the number is divisible by 2 or not

 {

 System.out.println("even number");

 }

 else

 {

 System.out.println("odd number");

 }

 }

}

Output

odd number

Example 12: if… else statement

class LeapYearExample

{

 public static void main(String[] args)

 {

 int year=2020;

 if(((year % 4 ==0) && (year % 100 !=0)) || (year % 400==0))

 System.out.println("LEAP YEAR");

 else

 System.out.println("COMMON YEAR");

 }

}

Output

LEAP YEAR

Java Programming - Module 1

27

3. if-else-if ladder statement

if-else-if ladder provides a way of putting ifs together when multipath decisions

are involved. A multipath decision is a chain of ifs in which the statements

associated with each else is an if. General form of if-else-if ladder is

Example 13: if-else-if statement

public class PositiveNegativeExample

{

 public static void main(String[] args)

 {

 int number= -13;

 if(number>0)

 System.out.println("POSITIVE");

 else if(number<0)

 System.out.println("NEGATIVE");

 else

 System.out.println("ZERO");

 }

}

Output

NEGATIVE

if(condition1)

 statement-1;

else if(condition2)

 statement-2;

else if(condition3)

 statement-3;

..........................

else if(condition n)

statement-n;

else

 default-statement;

statement-x;

This construct is known as else if ladder. The

conditions are evaluated from top downwards.

As soon as the true condition is found, the

statement associated with it is executed and

the control is transferred to statement-x

(skipping rest of the ladder). When all n

conditions become false, then the final else

containing default-statement the will be

executed.

Java Programming - Module 1

28

Example 14: if-else-if statement

class IfElseIfExample

{

 public static void main(String[] args)

 {

 int marks=65;

 if(marks<50)

 {

 System.out.println("fail");

 }

 else if(marks>=50 && marks<60)

 {

 System.out.println("D grade");

 }

 else if(marks>=60 && marks<70)

 {

 System.out.println("C grade");

 }

 else if(marks>=70 && marks<80)

 {

 System.out.println("B grade");

 }

 else if(marks>=80 && marks<90)

 {

 System.out.println("A grade");

 }

 else if(marks>=90 && marks<100)

 {

 System.out.println("A+ grade");

 }

 else

 {

 System.out.println("Invalid!");

 }

 }

}

Output

C grade

Java Programming - Module 1

29

4. nested if statement

The nested if statement represents the if block within another if block. Here, the

inner if block condition executes only when outer if block condition is true.

Nested if is used when a series of decisions are involved. General form is

Example 15: nested-if statement

class JavaNestedIfExample

{

 public static void main(String[] args)

 {

 int age=20;

 int weight=80; //Creating two variables for age and weight

 if(age>=18) //applying condition on age and weight

 {

 if(weight>50)

 {

 System.out.println("You are eligible to donate blood");

 }

 }

 }

}

Output

You are eligible to donate blood

if(condition1)

{

 if(condition2)

 {

 statement-1;

}

else

{

 statement-2;

 }

}

else

{

Statement-3;

}

statement-x;

Here if condition1 is false, statement-3 will

be executed; otherwise it continues to perform

second test. If is condition2 is true, the

statement-1 will be executed; otherwise

statement-2 will be executed and control will

then transferred to statement-x.

Java Programming - Module 1

30

switch statement

The switch is a built-in multiway decision statement in java. The Java switch

statement executes one statement from multiple conditions. It is like if-else-if

ladder statement. In other words, the switch statement tests the equality of a

variable against multiple values. The switch statement works with byte, long, int

and character. General form of switch statement is

Example 16: switch statement

class SwitchExample

{

 public static void main(String[] args)

 {

 int number=20;//Declaring a variable for switch expression

 switch(number) //Switch expression

 {

 //Case statements

 case 10:

 System.out.println("10");

 break;

 case 20:

 System.out.println("20");

 break;

The expression is an integer expression or

characters. value-1,value-2…are constants

or constant expressions (evaluate to an

integral constant). And are known as case

labels. Each of these values should be

unique within a switch statement. block-1,

block-2 … are statement lists and may

contain zero or more statements. The

break statement at the end of each block

signals the end of a particular cases and

causes an exit from the switch statement,

transferring control to the statement-x

following switch.

switch(expression)

{

 case value-1:

 block-1

 break; //optional

 case value-2:

 block-2

 break; //optional

 ………….

 default:

 default-block

 break;

}

statement-x;

Java Programming - Module 1

31

 case 30:

 System.out.println("30");

 break;

 //Default case statement

 default:

 System.out.println("Not in 10, 20 or 30");

 }

 }

}

Output

20

Example 17: switch statement

class SwitchVowelExample

{

 public static void main(String[] args)

 {

 char ch='O';

 switch(ch)

 {

 case 'a':

 System.out.println("Vowel");

 break;

 case 'e':

 System.out.println("Vowel");

 break;

 case 'i':

 System.out.println("Vowel");

 break;

 case 'o':

 System.out.println("Vowel");

 break;

 case 'u':

 System.out.println("Vowel");

 break;

 case 'A':

 System.out.println("Vowel");

 break;

 case 'E':

 System.out.println("Vowel");

 break;

 case 'I':

Java Programming - Module 1

32

 System.out.println("Vowel");

 break;

 case 'O':

 System.out.println("Vowel");

 break;

 case 'U':

 System.out.println("Vowel");

 break;

 default:

 System.out.println("Consonant");

 }

 }

}

Output

Vowel

Example 18: switch statement without break statement

class SwitchExample2

{

 public static void main(String[] args)

 {

 int number=20;

 switch(number) //switch expression with int value

 {

 //switch cases without break statements

 case 10: System.out.println("10");

 case 20: System.out.println("20");

 case 30: System.out.println("30");

 default:System.out.println("Not in 10, 20 or 30");

 }

 }

}

Output

20

30

Not in 10, 20 or 30

Conditional Operator

Refer Operators.

Java Programming - Module 1

33

Decision making and Looping

Another set of control statements in java are iteration statements. Iteration

statements enable program execution to repeat one or more statements. That is

iteration statements forms loops.

A loop is a way of repeating lines of code more than once. The block of code

contained within the loop will be executed again and again until the condition

required by the loop is met. The process of repeatedly executing a block of

statements is known as looping. Statements in the block may be executed any

number of times from zero to infinite number. If a loop continues forever, it is

called an infinite loop.

A looping process, in general, includes the following steps.

1. Setting and initializing a control variable.

2. Execution of statements in the loop.

3. Test for a specified condition for execution of loop

4. Incrementing/decrementing control variable

Java language provides three types of iterative statements:- for, while and do-

while.

1. while

The while loop is java‟s most fundamental looping statement. It repeats a

statement or block of statements while its controlling expression (condition) is

true. Its general form is

Condition can be any Boolean expression. The body of loop will be executed as

long as the conditional expression is true. When condition becomes false,

control passes to the next line of code immediately following the loop.

Initialisation;

while (condition)

 {

 body of the loop

}

Java Programming - Module 1

34

Example 19 : while loop

class WhileExample

{

public static void main(String[] args)

{

 int i=1;

 while(i<=5)

 {

 System.out.println(i);

 i++;

 }

}

}

Output

1

2

3

4

5

2. do-while

The Java do-while loop is used to iterate a part of the program several times. If

the number of iteration is not fixed and you must have to execute the loop at

least once, it is recommended to use do-while loop. The Java do-while loop is

executed at least once because condition is checked after loop body. Its general

form is

Each iteration of the do-while loop first executes the body of the loop and then

evaluates the condition. If this expression is true, the loop will repeat. Otherwise

Initialisation;

do

{

 body of the loop

 } while (condition);

Java Programming - Module 1

35

the loop terminates. Condition must be a boolean expression.

Example 20 :do- while loop

class DoWhileExample

 {

 public static void main(String args[])

{

 int x = 10;

 do

 {

 System.out.print("value of x : " + x);

 x++;

 System.out.print("\n");

 }while(x < 20);

 }

}

Output

value of x : 10

value of x : 11

value of x : 12

value of x : 13

value of x : 14

value of x : 15

value of x : 16

value of x : 17

value of x : 18

value of x : 19

3. for

A for loop is a repetition control structure that allows programmer to efficiently

write a loop that needs to be executed a specific number of times. A for loop is

useful when the number of times a task is to be repeated is previously known.

The General form of for loop is

Java Programming - Module 1

36

The execution of for loop statement is as follows.

1. Initialisation of control variable is done first, using assignment statements

such as i=1 or count =0.

2. The value of control variable is tested using condition. Condition should be

a relative expression. If the condition is true, the body of the loop is

executed; otherwise loop is terminated and execution continues with the

statement that immediately follows loop.

3. When the body of the loop is executed, the control is transferred back to the

for statement after evaluating the last statement in the loop. Now the control

variable is again tested to see whether it satisfies the loop condition. If the

condition is satisfied, the body of the loop is again executed.

4. This process continues till the value of the control variable fails to satisfy the

test condition.

Example 21 : for loop

class ForExample

{

public static void main(String[] args)

{

 int sum=0;

 for(int i=1;i<=10;i++)

 {

 System.out.println("Sum of first 10 natural numbers is "+sum);

 }

}

}

Output

Sum of first 10 natural numbers is 55

for(initialisation; test condition; increment/decrement)

 {

 body of the loop

}

Java Programming - Module 1

37

Example 22 : Nested for loop

class PyramidExample2

{

public static void main(String[] args)

{

 int term=6;

 for(int i=1;i<=term;i++)

 {

 for(int j=term;j>=i;j--)

 {

 System.out.print("* ");

 }

 System.out.println();//new line

 }

}

}

Output

* * * * * *

* * * * *

* * * *

* * *

* *

*

Jump statements

The Java jumping statements are the control statements which transfer the

program execution control to a specific statement. Java has three types of

jumping statements break, continue and return. These statements transfer

execution control to another part of the program.

Java Programming - Module 1

38

1. break

When a break statement is encountered inside a loop, the loop is immediately

terminated and the program control resumes at the next statement following the

loop. The Java break statement is used to break loop or switch statement. It

breaks the current flow of the program at specified condition. In case of inner

loop, it breaks only inner loop. Java break statement can be used with all types

of loops such as for loop, while loop and do-while loop.

Example 23 : break statement

class BreakExample

{

public static void main(String[] args)

{

 for(int i=1;i<=10;i++)

 {

 if(i==5)

 {

 //breaking the loop

 break;

 }

 System.out.println(i);

 }

}

}

Output

1

2

3

4

2. continue

The continue statement is used in loop control structure when you need to jump

to the next iteration of the loop immediately. The Java continue statement is

used to continue the loop. It continues the current flow of the program and skips

Java Programming - Module 1

39

the remaining code at the specified condition. In case of an inner loop, it

continues the inner loop only. Java continue statement can be used in all types

of loops such as for loop, while loop and do-while loop.

Example 24: continue statement

class ContinueExample

{

public static void main(String[] args)

{

 for(int i=1;i<=10;i++)

 {

 if(i==5)

 {

 continue;//it will skip the rest statement

 }

 System.out.println(i);

 }

}

}

Output

1

2

3

4

6

7

8

9

10

3. return

The return statement is mainly used in methods in order to terminate a method

in between and return back to the caller method.

Note: return statement will be explain in second module

Java Programming - Module 1

40

Labelled loops

The Java allows you to stick a label to a loop. It is like you name a loop, which

is useful when you use multiple nested loops in a program.

Example 25: labelled loop

class WithLabelledLoop

{

 public static void main(String args[])

 {

 int i,j;

 loop1: for(i=1;i<=10;i++)

 {

 System.out.println();

 loop2: for(j=1;j<=10;j++)

 {

 System.out.print(j + " ");

 if(j==5)

 break loop1; //Statement 1

 }

 }

 }

 }

Output

 1 2 3 4 5

