
LAYOUT MANAGERS

The Layout Managers are used to arrange components of frame in a particular

manner. A layout manager arranges the child components of a container. It

positions and sets the size of components within the container's display area

according to a particular layout scheme. The layout manager's job is to fit the

components into the available area, while maintaining the proper spatial

relationships between the components. AWT comes with a few standard layout

managers that will collectively handle most situations.

Each Container object has a layout manager associated with it. A layout

manager is an instance of any class that implements the LayoutManager

interface. The layout manager is set by the setLayout() method. If no call to

setLayout() is made, then the default layout manager is used. Whenever a

container is resized (or sized for the first time), the layout manager is used to

position each of the components within it. The setLayout() method has the

following general form:

void setLayout(LayoutManager layoutObj)

Here, layoutObj is a reference to the desired layout manager. If you wish to

disable the layout manager and position components manually, pass null for

layoutObj. If you do this, you will need to determine the shape and position of

each component manually, using the setBounds() method defined by

Component. Normally, you will want to use a layout manager.

Each layout manager keeps track of a list of components that are stored by their

names. The layout manager is notified each time you add a component to a

container. Java has several predefined LayoutManager classes. You can use

the layout manager that best fits your application.

FlowLayout

FlowLayout implements a simple layout style, which is similar to how words

flow in a text editor. The direction of the layout is governed by the container’s

component orientation property, which, by default, is left to right, top to bottom.

Therefore, by default, components are laid out line-by-line beginning at the

center . In all cases, when a line is filled, layout advances to the next line. A

small space is left between each component, above and below, as well as left

and right. Here are the constructors for FlowLayout:

FlowLayout()

FlowLayout(int how)

FlowLayout(int how, int horz, int vert)

The first form creates the default layout, which centers components and leaves

five pixels of space between each component. The second form lets you specify

how each line is aligned.Valid values for how are as follows:

FlowLayout.LEFT

FlowLayout.CENTER

FlowLayout.RIGHT

These values specify left, center, right, leading edge, and trailing edge

alignment, respectively.

The third constructor allows you to specify the horizontal and vertical space left

between components in horz and vert, respectively.

Example:FlowLayout

import javax.swing.*;

import java.awt.*;

class SwingDemo extends JFrame

{

 JButton b1,b2;

 SwingDemo()

 {

 super("My Swing Demo");

 setLayout(new FlowLayout());

 b1=new JButton("Click Me...");

 b2=new JButton("Reset...");

 add(b1);

 add(b2);

 setSize(500,600);

 setVisible(true);

 }

 public static void main(String args[])

 {

 new SwingDemo();

 }

}

Output

BorderLayout

The BorderLayout class implements a common layout style for top-level

windows. It has four narrow, fixed-width components at the edges and one large

area in the center. The four sides are referred to as north, south, east, and west.

The middle area is called the center.

Here are the constructors defined by BorderLayout:

BorderLayout()

BorderLayout(int horz, int vert)

The first form creates a default border layout. The second allows you to specify

the horizontal and vertical space left between components in horz and vert,

respectively.

BorderLayout defines the following constants that specify the regions:

BorderLayout.CENTER

BorderLayout.SOUTH

BorderLayout.EAST

BorderLayout.WEST

BorderLayout.NORTH

When adding components, you will use these constants with the following form

of add(), which is defined by Container:

void add(Component compObj, Object region)

Here, compObj is the component to be added, and region specifies where the

component will be added.

Example:BorderLayout

import java.awt.*;

import javax.swing.*;

public class Border1

{

 JFrame f;

 Border1()

 {

 f=new JFrame();

 JButton b1=new JButton("NORTH");;

 JButton b2=new JButton("SOUTH");;

 JButton b3=new JButton("EAST");;

 JButton b4=new JButton("WEST");;

 JButton b5=new JButton("CENTER");;

 f.add(b1,BorderLayout.NORTH);

 f.add(b2,BorderLayout.SOUTH);

 f.add(b3,BorderLayout.EAST);

 f.add(b4,BorderLayout.WEST);

 f.add(b5,BorderLayout.CENTER);

 f.setSize(300,300);

 f.setVisible(true);

 }

 public static void main(String[] args)

 {

 new Border1();

 }

}

Output

GridLayout

GridLayout lays out components in a two-dimensional grid. When you

instantiate a GridLayout, you define the number of rows and columns. The

constructors supported by GridLayout are shown here:

GridLayout()

GridLayout(int numRows, int numColumns)

GridLayout(int numRows, int numColumns, int horz, int vert)

The first form creates a single-column grid layout. The second form creates a

grid layout with the specified number of rows and columns. The third form

allows you to specify the horizontal and vertical space left between components

in horz and vert, respectively. Either numRows or numColumns can be zero.

Specifying numRows as zero allows for unlimited-length columns.

Specifying numColumns as zero allows for unlimited-length rows.

Example:GridLayout

import java.awt.*;

import javax.swing.*;

public class Grid

{

 JFrame f;

 JButton b1,b2,b3,b4,b5;

 Grid()

 {

 f=new JFrame();

 f.setLayout(new GridLayout(3,2));

 b1=new JButton("Button 1");

 b2=new JButton("Button 2");

 b3=new JButton("Button 3");

 b4=new JButton("Button 4");

 b5=new JButton("Button 5");

 f.add(b1);

 f.add(b2);

 f.add(b3);

 f.add(b4);

 f.add(b5);

 f.setSize(300,300);

 f.setVisible(true);

 }

public static void main(String[] args)

 {

 new Grid();

 }

}

Output

CardLayout

The CardLayout class is unique among the other layout managers in that it

stores several different layouts. Each layout can be thought of as being on a

separate index card in a deck that can be shuffled so that any card is on top at a

given time. This can be useful for user interfaces with optional components that

can be dynamically enabled and disabled upon user input. You can prepare the

other layouts and have them hidden, ready to be activated when needed.

CardLayout provides these two constructors:

CardLayout()

CardLayout(int horz, int vert)

The first form creates a default card layout. The second form allows you to

specify the horizontal and vertical space left between components in horz and

vert, respectively.

Use of a card layout requires a bit more work than the other layouts. The cards

are typically held in an object of type Panel. This panel must have CardLayout

selected as its layout manager. The cards that form the deck are also typically

objects of type Panel. Thus, you must create a panel that contains the deck and a

panel for each card in the deck. Next, you add to the appropriate panel the

components that form each card. You then add these panels to the panel for

which CardLayout is the layout manager. Finally, you add this panel to the

window. Once these steps are complete, you must provide some way for the user

to select between cards. One common approach is to include one push button for

each card in the deck.

When card panels are added to a panel, they are usually given a name. Thus,

most of the time, you will use this form of add() when adding cards to a panel:

void add(Component panelObj, Object name)

Here, name is a string that specifies the name of the card whose panel is

specified by panelObj.

After you have created a deck, your program activates a card by calling one of

the following methods defined by CardLayout:

void first(Container deck)

void last(Container deck)

void next(Container deck)

void previous(Container deck)

void show(Container deck, String cardName)

Here, deck is a reference to the container (usually a panel) that holds the cards,

and cardName is the name of a card. Calling first() causes the first card in the

deck to be shown. To show the last card, call last(). To show the next card, call

next(). To show the previous card, call previous(). Both next() and previous()

automatically cycle back to the top or bottom of the deck, respectively. The

show() method displays the card whose name is passed in cardName.

Example: CardLayout

import java.awt.*;

import java.awt.event.*;

import javax.swing.*;

public class CardLayoutExample extends JFrame implements ActionListener

{

 CardLayout card;

 JButton b1,b2,b3;

 Container c;

 CardLayoutExample()

 {

 c=getContentPane();

 card=new CardLayout(40,30);

 //create CardLayout object with 40 hor space and 30 ver space

 c.setLayout(card);

 b1=new JButton("Apple");

 b2=new JButton("Boy");

 b3=new JButton("Cat");

 b1.addActionListener(this);

 b2.addActionListener(this);

 b3.addActionListener(this);

 c.add("a",b1);c.add("b",b2);c.add("c",b3);

 }

 public void actionPerformed(ActionEvent e)

 {

 card.next(c);

 }

 public static void main(String[] args)

 {

 CardLayoutExample cl=new CardLayoutExample();

 cl.setSize(400,400);

 cl.setVisible(true);

 }

}

Output

Box Layout

The BoxLayout class is used to arrange the components either vertically (along

Y-axis) or horizontally (along X-axis). In BoxLayout class, the components are

put either in a single row or a single column. The components will not wrap so,

for example, a horizontal arrangement of components will stay horizontally

arranged when the frame is resized. For this purpose, BoxLayout provides four

constants. They are as follows:

public static final int X_AXIS

public static final int Y_AXIS

public static final int LINE_AXIS

public static final int PAGE_AXIS

Constructor of the BoxLayout class:

BoxLayout(Container c, int axis) - This creates a BoxLayout class that

arranges the components with the X-axis or Y-axis.

Commonly Used Methods:

Method Description

getLayoutAlignment Returns the alignment along the X axis for the

X (Container con) container.

getLayoutAlignment

Y (Container con)

Returns the alignment along the Y axis for the

container

maximumLayoutSize

(Container con)

Returns the maximum dimensions the target

container can use to lay out the components it

contains.

minimumLayoutSize

(Container con)

Returns the minimum dimensions needed to lay

out the components contained in the specified

target container.

layoutContainer

(Container tar)

Called by the AWT when the specified container

needs to be laid out.

Example: BoxLayout – Y AXIS

import java.awt.*;

import javax.swing.*;

public class BoxLayoutExample1 extends Frame

{

 Button buttons[];

 public BoxLayoutExample1 ()

{

 buttons = new Button [5];

 for (int i = 0;i<5;i++)

{

 buttons[i] = new Button ("Button " + (i + 1));

 add (buttons[i]);

 }

 setLayout (new BoxLayout (this, BoxLayout.Y_AXIS));

setSize(400,400);

setVisible(true);

}

 public static void main(String args[])

{

BoxLayoutExample1 b=new BoxLayoutExample1();

}

}

Output

Null Layout

The layout managers are used to automatically decide the position and size of

the added components. In the absence of a layout manager, the position and size

of the components have to be set manually. The setBounds() method is used in

such a situation to set the position and size. To specify the position and size of

the components manually, the layout manager of the frame can be null. Null

layout is not a real layout manager. It means that no layout manager is assigned

and the components can be put at specific x,y coordinates.

setBounds()

The setBounds() method needs four arguments. The first two arguments are x

and y coordinates of the top-left corner of the component, the third argument is

the width of the component and the fourth argument is the height of the

component.

Syntax

setBounds(int x-coordinate, int y-coordinate, int width, int height)

Example : Null Layout

import javax.swing.*;

import java.awt.*;

public class SetBoundsTest

{

 public static void main(String arg[])

 {

 JFrame frame = new JFrame("SetBounds Method Test");

 frame.setSize(375, 250);

 frame.setLayout(null); // Setting layout as null

 JButton button = new JButton("Hello Java");

 button.setBounds(80,30,120,40); // Setting position and size of

a button

 frame.add(button);

 frame.setVisible(true);

 }

}

Output

